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CHAPTER 1. GENERAL INTRODUCTION

Plant breeding has been defined as the art and science of producing desired characteristics

through artificial selection (Poehlman, 2013). Practiced since the beginning of civilizations, plant

breeders in the 20th century made enormous changes to important agronomic traits, e.g., grain yield

and pest resistance, of cereal crops (Duvick, 1994; Rincker et al., 2014). This was accomplished

through ad hoc adoptions of emerging technologies developed by agricultural, mechanical, electrical

and information engineers. In the 21st century, demands for increasing production of food, fiber

and energy with less water, fuel and fertilizer will force plant breeding to become more efficient and

effective.

Discovery of genetic variants associated with crop phenotypic variants have been accelerating

through use of forward and reverse genetics approaches. We now have databases cataloging thou-

sands of genetic variants (alleles) associated with favorable phenotypic variants in large germplasm

repositories (McCouch et al., 2012; Cavanagh et al., 2013). This information tells us that favor-

able alleles are distributed unevenly throughout germplasm collections and unevenly across crop

genomes. These resources will provide desirable alleles for genetic improvement of crops in rapidly

changing environments (Kumar et al., 2010; Leung et al., 2015).

Introgression of a single desirable allele from an inferior agronomic cultivar to an elite cultivar is

routinely accomplished using marker assisted backcrossing strategies (Visscher et al., 1996; Frisch

et al., 1999; Frisch and Melchinger, 2005; Peng et al., 2014a). Furthermore, as long as there are

very few cultivars that are capable of maintenance and regeneration in tissue culture, creation of

novel alleles through genome editing technologies will likewise depend on trait introgression for

cultivar development. Introgression of multiple alleles is not as well studied, but genomic selection

(Bernardo, 2009; Longin and Reif, 2014; Gorjanc et al., 2016) and marker assisted gene pyramiding

(Servin et al., 2004; Xu et al., 2011; Canzar and El-Kebir, 2011; De Beukelaer et al., 2015) have
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been proposed as approaches for introgressing multiple alleles from unadapted landraces into elite

cultivars.

The more complex challenge of aggregating sets consisting of multiple alleles into cultivars with

predictable adaptive trait phenotypes will require transfer of knowledge from operations researchers

and mathematicians to plant breeders. This dissertation discusses a series of research conducted

from the perspective of operations research aiming at improving the efficiency and effectiveness of

the trait introgression project. It explores two related fundamental topics in trait introgression,

which are parental selection and resource allocation. The topic of parental selection is about how to

efficiently select the breeding targets in the project based on genotypic and phenotypic information,

while the resource allocation is about how to design more efficient breeding strategy to utilize the

resources in the project. The remainder of the dissertation is organized as follows.

The first chapter is constructed from a paper published in the journal of Genetics (Han et al.,

2017) on the topic about parental selection. This chapter formulates the multi-allelic trait intro-

gression (MATI) as an engineering system and designs an algorithmic process with mathematical

definitions. A new metric for parental selection, which is named as the “Predicted Cross Value”

(PCV) with assistance of genetic markers is proposed in the chapter. Via the PCV metric, signif-

icant improvements and the great potential for further research on trait introgression projects are

demonstrated.

The second chapter is constructed from a paper submitted to the journal of Frontiers of Genetics.

The resources allocation in the introgression plays a crucial role as well as parental selection because

well designed allocation plans can improve the efficiency of the breeding projects dramatically. In

this chapter, we expand our discussion on designing more efficient strategy based on the Markov

Decision Processes (MDP) model. In the chapter, we complete the process of multi-allelic trait

introgression and propose an updated version of algorithmic simulating process for MATI process.

At the same time, we formally state the resource allocation problem for introgression process and

define the MDP model to solve the resource allocation problem. The results are demonstrated via

computer simulation based case studies and comparisons with other breeding strategies according
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to the assessing criteria are proposed, as well. In the final part of this chapter we derive the

conclusion that better resources allocation plans can accelerate the breeding project significantly.

The third chapter is constructed from a paper to be submitted to the journal of Genetics on

the topic about parental selection for multiple breeding parents. In this chapter, we review the

limitation of the predicted cross value (PCV) for one pair of breeding parents and propose the

NPCV concept for multi-pair breeding parents selection. We update the plumbing system for

calculation, as well. At the same time, we propose set cover models for the conventional approach

and the new NPCV metric to select the optimal breeding parents. According to the simulation

results, the NPCV metric is proved to outperform the conventional approach and improve the

efficiency and effectiveness of trait introgression process significantly.
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CHAPTER 2. THE PREDICTED CROSS VALUE FOR GENETIC

INTROGRESSION OF MULTIPLE ALLELES

Abstract

We apply operations research approaches to optimize introgression of multiple alleles from

a donor to a recipient genome. First, we frame the trait introgression project as an algorithmic

process that can be mathematically formulated and optimized. We then introduce a novel metric for

selecting breeding parents that we refer to as the Predicted Cross Value (PCV). Unlike the various

forms of estimated breeding values, the PCV retains recombination as an essential parameter and

calculates the probability that a pair of parents will produce a gamete with desirable alleles at all

quantitative trait loci. We compared the PCV approach with existing approaches in two simulation

experiments, in which seven and twenty desirable alleles were to be introgressed from a donor line

into a recipient line. Results suggest that the PCV is more efficient and effective for multi-allelic

trait introgression than existing approaches. We also discuss how the operations research framework

can be used for other crop genetic improvement projects and several potential research directions.
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2.1 Introduction

Discovery of genetic variants associated with crop phenotypic variants have been accelerating

through use of forward and reverse genetics approaches. We now have databases cataloging thou-

sands of genetic variants (alleles) associated with favorable phenotypic variants in large germplasm

repositories (McCouch et al., 2012; Cavanagh et al., 2013). This information tells us that favor-

able alleles are distributed unevenly throughout germplasm collections and unevenly across crop

genomes. These resources will provide desirable alleles for genetic improvement of crops in rapidly

changing environments (Kumar et al., 2010; Leung et al., 2015).

Introgression of a single desirable allele from an inferior agronomic cultivar to an elite cultivar is

routinely accomplished using marker assisted backcrossing strategies (Visscher et al., 1996; Frisch

et al., 1999; Frisch and Melchinger, 2005; Peng et al., 2014a). Furthermore, as long as there are

very few cultivars that are capable of maintenance and regeneration in tissue culture, creation of

novel alleles through genome editing technologies will likewise depend on trait introgression for

cultivar development. Introgression of multiple alleles is not as well studied, but genomic selection

(Bernardo, 2009; Longin and Reif, 2014; Gorjanc et al., 2016) and marker assisted gene pyramiding

(Servin et al., 2004; Xu et al., 2011; Canzar and El-Kebir, 2011; De Beukelaer et al., 2015) have

been proposed as approaches for introgressing multiple alleles from unadapted landraces into elite

cultivars.

The genomic estimated breeding value (GEBV) is a commonly used measure for parental selec-

tion in not only trait introgression but also genomic selection projects. More recently, the optimal

haploid value (OHV) (Daetwyler et al., 2015) was proposed as an alternative breeding value, which

measures the potential rather than the realized fitness. Herein, we propose a new metric, the Pre-

dicted Cross Value (PCV), for parental selection in introgression of multiple alleles. This metric

calculates the probability that a cross will produce an ideal genotype in two generations. The main

difference between this new metric and existing metrics for parental selection is that the PCV is

defined for two breeding parents using recombination frequency information to measure their com-
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plementarity, whereas the GEBV and OHV are defined for a single individuals, assuming that the

merit of a cross is an additive function of the two individuals’ breeding values.

We compare selection using PCV with GEBV and OHV in two multi-allelic introgression

projects: a) Introgression of seven independently segregating alleles. Such situations occur in

self pollinated crops, e.g., sorghum and soybean, where the goal is to adapt a tropical line to high

latitudes for purposes of evaluating other agronomic traits without confounding influences of matu-

rity. b) Introgression of a larger number of alleles from an exotic into an elite cultivar for purposes

of improving a polygenic trait.

2.2 Formulation

The general objective of multi-allelic introgression projects is to transfer a discrete set consisting

of multiple desirable alleles, or haplotypes, from a donor to a recipient. The ultimate goal is to

produce at least one individual genome consisting of homozygous desirable haplotypes and no

other marker alleles from the donor. The introgression process begins by identifying the donor and

recipient cultivars based on criteria defined by the breeder. The selected cultivars are then planted,

grown to sexual maturity and crossed. The resulting seeds are harvested and planted along with

the recipient parent. The progeny are evaluated to assure that they represent the F1 generation

with half of their genomes inherited from each parent. In subsequent filial generations, breeding

parents are selected from the current population to be crossed, and the progeny are evaluated to

determine if any meet the goal. If not, the process of selection and reproduction will be repeated.

2.2.1 Multi-allelic introgression as an algorithmic process

We illustrate the major components of the introgression process in Figure 2.1 and explain each

of the components as follows.

• The

�� ��Start point
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?
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?
HHH

HHH
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���
� ��

��

Done?

?
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no
-

�� ��Finish

Selection

6

Reproduction�

Figure 2.1: Flowchart of the multi-allelic introgression process.

The introgression process starts with identification of at least one recipient and one donor.

In the case of most annual crops both recipient and donor are homozygous throughout their

genomes. The majority of alleles in the donor are undesirable, but do have desirable versions

of alleles that the recipient is lacking.

• The Evaluation step

In this step, marker genotypes of individuals in the current generation are evaluated.

• The

HHH
HHHH

H

���
� ��

��

Done? condition

The stopping condition is checked in this step, which is whether the newest generation of

progeny contains an individual that is homozygous with only desirable alleles from both the

recipient and donor.

• The Selection step

In this step, breeding parents are selected from the current generation of individuals to pro-

duce the next generation of progeny. The current generation includes the recipient line and

the newly produced generation of progeny but not individuals from previous generations.
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This is because the recipient is a replicable entity, whereas individual progeny from previous

generations have lived through their life-cycle and were not replicable. If the cross involves

the recipient cultivar, then it is referred to as a backcross. Another special case of selection

is to select only one plant to cross through self-pollination.

• The Reproduction step

In this step, the breeding parents selected from the Selection step are crossed to produce a

new generation of progeny. The genotypes of this next generation of progeny are produced

through the stochastic processes of transmission genetics.

• The

�� ��Finish point

The goal of an introgression breeding project is to produce an ideal line that inherits only

the desirable alleles from the recipient and the donor line. In other words, the ideal line is

a homozygous one that does not contain undesirable alleles. The breeding process finishes

when an ideal line has been produced. This line will then proceed to further stages of new

seed variety development.

2.2.2 Simplifying assumptions

Several assumptions are made in order to simplify the formulation and illustrate the core ele-

ments of the process. In Section 6, we discuss relaxing these assumptions in future studies.

• Consider annual diploid and allopolyploid species such as corn, rice, soybean and wheat with

subgenome specific loci. Extension to perennial and autopolyploid crops, such as alfalfa is

deferred for future research.

• Consider a single multi-allelic trait, where all segregating loci associated with the trait are

known. Results also apply to multiple traits where all traits are of equal value.
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• All marker alleles are either desirable or undesirable. Values of alleles could be modeled as

continuous from some distribution or in many cases, the value of an allele is unknown. We

defer expansion to these situations for future research.

• To illustrate the principles, all desirable alleles missing in the recipient are carried by one

donor line. Consideration of desirable alleles from multiple donors with each one carrying a

subset is deferred for future research.

• One pair of parents is selected for crossing in each generation, with self-pollination as a

special but feasible option. In actual breeding practice, multiple crosses are sometimes made

to produce sufficient numbers of progeny for field trial evaluations. Our approach readily

extends to these situations.

• During evaluation, a sufficient number of informative markers are distributed throughout the

genome at sufficient density to allow estimation of recombination between all adjacent pairs

of markers.

• Recombination events between pairs of adjacent loci are assumed to be independent (Haldane,

1919). Consideration of interference is deferred for future research.

2.2.3 Mathematical formulation of the multi-allelic introgression process

We use an N by 2 binary matrix, say L ∈ BN×2, to represent the genotype of an individual

plant, where N is the total number of QTL in the genome. Each row represents a locus in the

genome, and the two columns represent the paired chromosomes. The binary value Li,j indicates

whether the allele in locus i of chromosome j is desirable (Li,j = 1) or undesirable (Li,j = 0).

Definition 1. We define the Gamete function, g = Gamete(L, J), as follows. Its input parameters

include a binary matrix L ∈ BN×2 and a binary vector J ∈ BN . Its output is a binary vector

g ∈ BN , which is determined as gi = Li,Ji+1,∀i ∈ {1, ..., N}.

In this definition, L represents the genotype of an individual plant, and the binary vector J

indicates the sources of inheritance for the alleles in a gamete. If Ji = 0, then the gi allele is
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inherited from Li,1; otherwise it originates from Li,2. To realistically represent the actual gamete

formation process, the input binary vector J must be a random one following a special distribution,

which is defined as follows.

Definition 2. We say that the random binary vector J ∈ BN follows an inheritance distribution

with parameter r ∈ [0, 0.5]N−1 if

J1 =
{ 0 w.p. 0.5

1 w.p. 0.5
, (2.1)

Ji =
{ Ji−1 w.p. 1− ri−1

1− Ji−1 w.p. ri−1

, ∀i ∈ {2, ..., N}. (2.2)

According to Mendel’s second law, L1,1 and L1,2 are equally likely to transmit g1, hence Equation

(4.1). Given the inheritance source of allele (i−1) in the gamete, the probability that allele i comes

from the same chromosome (Ji = Ji−1) is 1− ri−1, which explains Equation (4.2).

Definition 3. We define the Reproduce function, X = Reproduce(L1, L2, r,K), as follows. Its

input parameters include two binary matrices L1, L2 ∈ BN×2, a vector r ∈ [0, 0.5]N−1, and a positive

integer number K. Its output is a three-dimensional matrix X ∈ BN×2×K , representing a population

of K progeny, which is determined by first generating 2K independent and identically distributed

random vectors from the inheritance distribution with parameter r, denoted as Jp, ∀p ∈ {1, ..., 2K},

and then setting Xi,j,k = Gametei(L
j , J2k−2+j), ∀i ∈ {1, ..., N}, j ∈ {1, 2}, k ∈ {1, ...,K}.

Definition 4. The Select function, [k1, k2] = Select(X, r), as follows. Its input parameters

include a three-dimensional binary matrix, X ∈ BN×2×K , and a vector r ∈ [0, 0.5]N−1. Its output

includes two integers, k1, k2 ∈ Z

Here, k1 and k2 are the indices of the selected parents in the breeding population X. If k1 = k2,

then self-pollination is suggested as the breeding strategy.

Definition 5. We define the Breed function as G = Breed(P 0, r,K). Its input parameters include

a three-dimensional binary matrix P 0 ∈ BN×2×2, a vector r ∈ [0, 0.5]N−1, and a positive integer
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K. Its output, G, is the number of generations it takes to successfully finish the process, which is

determined through the following steps.

Step 0 (Initialization) Set t = 0 and go to Step 1.

Step 1 (Evaluation)

If max
k

{
N∑
i=1

(P ti,1,k + P ti,2,k)

}
= 2N

RETURN: G = t.

Else Go to Step 2.

Step 2 (Selection) Obtain [kt1, k
t
2] = Select(P t, r) and go to step 3.

Step 3 (Reproduction) Obtain P t+1 =

Reproduce(P t
:,:,kt1

, P t
:,:,kt2

, r,K), update t← t+ 1, and go to Step 1.

The function Breed(P 0, r,K) is a mathematical formulation of the multi-allelic introgression

process, in which the selection step has the most significant influence on the efficiency of the process.

In Section 2.4, we review existing approaches for parental selection, and then we propose a new

approach in Section 3.

2.2.4 Existing approaches for parental selection

The genetic breeding value approach selects breeding parents based on the GEBV, which mea-

sures the fitness of individuals. In the context of multi-allelic introgression, if we assume uniform

weight for all desirable alleles, then the GEBV of an individual L is equivalent to the number of

desirable alleles:
N∑
i=1

(Li,1 + Li,2). (2.3)

The two individuals with the highest GEBV will be selected according to the GEBV approach.

The optimal haploid value approach (Daetwyler et al., 2015) defined a different metric for

parental selection. This approach recognizes that meiosis can produce gametes with recombined

haplotype loci. The OHV of an individual can be defined as the fitness of the best doubled-haploid
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progeny that could possibly be produced by selfing such individual. As such, OHV measures the

potential of fitness of the individual’s progeny. In the context of multi-allelic introgression, the

OHV of an individual L is defined as:

N∑
i=1

2 max{Li,1, Li,2}. (2.4)

The two individuals with the highest OHV will be selected according to the optimal haploid value

approach.

2.3 PCV for parental selection

We propose a new parental selection approach using the predicted cross value, which is defined

as follows.

2.3.1 Definition of PCV

Let L1, L2 ∈ BN×2 denote two breeding individuals, and let [g1, g2] denote a random progeny of

theirs, where g1 = Gamete(L1, J1) and g2 = Gamete(L2, J2) are random gametes produced by L1

and L2, respectively. When the progeny [g1, g2] is crossed with another individual (or itself) in the

next generation, it will produce a random gamete, which we denote as g3 = Gamete([g1, g2], J3).

Here J1, J2, and J3 are three independent and identically distributed random vectors following the

inheritance distribution with parameter r.

Definition 6. For a given pair of individuals L1 and L2, the predicted cross value is defined as

the probability that a random gamete, g3, produced by a random progeny from crossing these two

individuals will consist only of desirable alleles:

PCV(L1, L2, r) = P (g3i = 1,∀i ∈ {1, ...N}).

Here, r is the recombination frequency vector.

The rationale for the PCV definition is to calculate the probability that none of the undesirable

alleles survives two generations of meiosis. The essence of this approach is to select breeding parents
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based on their likelihood to produce an ideal gamete by combining their desirable alleles rather

than the fitness of the two breeding parents themselves.

2.3.2 The water pipe algorithm for calculating PCV

We designed a polynomial time algorithm for calculating PCV, which draws an analogy between

conditional probabilities and water flows through a plumbing system. The plumbing system consists

of N rows and four columns of valves and a number of water pipes connecting them. The 4N

valves correspond to the 4N alleles in the two breeding parents represented by the matrix [L1, L2].

For notational convenience, we will use L ∈ BN×4 to denote the matrix [L1, L2], so Li,1 = L1
i,1,

Li,2 = L1
i,2, Li,3 = L2

i,1, and Li,4 = L2
i,2 for all i ∈ {1, ..., N}. The intake on the top splits into four

pipes with equal volumes leading to the four valves in the first row. Except for the four in the last

row, each valve is connected by four pipes to the four valves in the next row. For all i ∈ {1, ..., N}

and j ∈ {1, 2, 3, 4}, if allele (i, j) is desirable, then the valve (i, j) is open, and all the water that

flows into the valve from above gets redistributed into the immediate downstream pipes according

to their relative volumes and goes down to the next row; but if the allele (i, j) is undesirable,

then the valve (i, j) is closed, and no matter how much water flows into the valve from above, the

water is retained there, neither passing further down nor going back up. For all i ∈ {1, ..., N − 1},

j ∈ {1, 2, 3, 4}, and k ∈ {1, 2, 3, 4}, the volume of the pipe that connects valves (i, k) and (i+ 1, j)

is denoted as Tk,j,i, where T is a three-dimensional matrix, which is referred to as the transition

matrix and defined as follows.

Definition 7. For a given vector of recombination frequencies, r ∈ [0, 0.5]N−1, the transition matrix

T ∈ [0, 0.5]4×4×(N−1) is defined as

T:,:,i =



(1− ri)2 ri(1− ri) 0.5ri 0.5ri

ri(1− ri) (1− ri)2 0.5ri 0.5ri

0.5ri 0.5ri (1− ri)2 ri(1− ri)

0.5ri 0.5ri ri(1− ri) (1− ri)2


,

∀i ∈ {1, ..., N − 1}. (2.5)
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We define the water matrix W ∈ [0, 1]N×4 to represent the amounts of water flowing inside the

plumbing system. For all i ∈ {1, ..., N} and j ∈ {1, 2, 3, 4}, Wi,j represents the amount of water

that flows out of the jth valve in the ith row. This value can be interpreted as the probability that

the first i alleles in the random gamete g3 are desirable and that the ith allele is inherited from the

jth chromosome of the breeding parents.

Definition 8. We define the water matrix W ∈ [0, 1]N×4 as

Wi,j = P (g1 = ... = gi = 1, gi = Li,j),∀i ∈ {1, ..., N}, j ∈ {1, 2, 3, 4}. (2.6)

Proposition 1. The water matrix can be calculated as follows.

W1,j =
1

4
L1,j ,∀j ∈ {1, 2, 3, 4}; (2.7)

Wi,j = Li,j

4∑
k=1

Tk,j,i−1Wi−1,k,∀i ∈ {2, ..., N}, j ∈ {1, 2, 3, 4}. (2.8)

Proposition 2. The PCV is the summation of the last row in the water matrix:

PCV(L1, L2, r) =

4∑
j=1

WN,j . (2.9)

The proofs for Propositions 1 and 2 can be found in the appendix.

2.3.3 Illustrative example

We illustrate the plumbing system with the following example.

Example 1. The two breeding parents are both ideal lines L1 = L2 =



1 1

1 1

1 1

1 1

1 1

1 1


and the recombi-

nation frequencies vector is r =

[
0.2 0.35 0.3 0.4 0.25

]>
.
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Figure 2.2: Illustration of the plumbing system for Example 1.

The plumbing system corresponding to Example 1 is illustrated in Figure 2.2. The black

rectangles are the valves, with binary numbers indicating whether they are open (1) or closed (0).

The blue parallelograms are the water pipes, whose widths represent their relative volumes and not

necessarily the actual amounts of water flowing through (they are equal only when both breeding

parents are ideal lines, as in Example 1). Since both breeding parents are already ideal lines, their

PCV is by definition equal to 1. Albeit trivial, this fact is verified by the plumbing system in Figure

2.2, where all the valves are open, and thus 100% of the water that is poured in will get its way

out.

We now illustrate the water pipe algorithm for calculating the PCV of the following example.
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Example 2. The two breeding parents are L1 =



1 1

1 0

1 1

0 1

1 1

0 0


and L2 =



0 1

1 1

1 0

0 1

1 0

1 1


and the recombina-

tion frequencies vector is the same as in Example 1.

Figure 2.3: Illustration of the plumbing system for Example 2.

The plumbing system corresponding to Example 2 is illustrated in Figure 2.3, in which we

removed those water pipes whose immediate upstream valves are closed. The transition ma-
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trix is T:,:,1 =



0.64 0.16 0.10 0.10

0.16 0.64 0.10 0.10

0.10 0.10 0.64 0.16

0.10 0.10 0.16 0.64


, T:,:,2 =



0.4225 0.2275 0.1750 0.1750

0.2275 0.4225 0.1750 0.1750

0.1750 0.1750 0.4225 0.2275

0.1750 0.1750 0.2275 0.4225


, T:,:,3 =



0.49 0.21 0.15 0.15

0.21 0.49 0.15 0.15

0.15 0.15 0.49 0.21

0.15 0.15 0.21 0.49


, T:,:,4 =



0.36 0.24 0.20 0.20

0.24 0.36 0.20 0.20

0.20 0.20 0.36 0.24

0.20 0.20 0.24 0.36


, T:,:,5 =



0.5625 0.1875 0.1250 0.1250

0.1875 0.5625 0.1250 0.1250

0.1250 0.1250 0.5625 0.1875

0.1250 0.1250 0.1875 0.5625


,

and the water matrix is W =



0.2500 0.2500 0 0.2500

0.2250 0 0.0900 0.2100

0.1476 0.1037 0.1252 0

0 0.1006 0 0.0640

0.0369 0.0490 0.0355 0

0 0 0.0307 0.0174


. Therefore, the PCV is 0 + 0 +

0.0307 + 0.0174 = 0.0481.

2.4 Conceptual distinctions of PCV, GBV, and OHV

The fundamental difference between PCV and the two existing approaches, GEBV and OHV,

lies on the rejection or acceptance of the assumption that the fitness of the progeny is an additive

function of the fitness of the two parents. The GEBV and OHV approaches accept the additive

assumption and select two individuals with the highest fitness measures as breeding parents. In

contrast, the PCV approach rejects the additive assumption and proposes to select two individuals

that have the highest probability to produce ideal offsprings that inherit desirable alleles from both

parents.

We use the following simple example to demonstrate the conceptual distinctions of these three

approaches.
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Example 3. Consider 10 loci of interest in a population of 50 individuals. Rather than describing

the genotypes of this population using a three-dimensional binary matrix defined in Section 2.3, we

illustrate the information in Figure 2.4. A black square is used to denote a “0” allele and a gray

square for a “1”. All the individuals in the sample of progeny are displayed abreast, so the figure

contains a matrix of 10 by 100 black-and-gray squares. Two sightly different shades of gray are

used to group together chromosome pairs that belong to the same individual. We will refer to the

ith individual from the left as individual i. Then individuals 1, 2, 3, 5, and 18 can be represented,

respectively, by 

0 0

1 1

1 1

1 0

1 0

1 1

1 1

1 0

0 1

1 1



,



0 0

1 1

0 1

1 1

0 1

1 1

1 0

1 1

0 1

1 1



,



0 1

1 1

0 1

1 1

0 0

1 0

0 1

1 1

1 0

1 1



,



0 0

0 1

1 1

0 1

1 0

1 0

1 0

1 1

1 0

1 1



, and



1 1

1 0

1 0

1 1

0 1

0 1

0 1

0 1

0 0

1 0



.

The recombination frequencies vector used in this example is

r =

[
0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1

]>
.

Figure 2.4: An illustration of 10 loci in a population consisting of 50 individuals.

The 50 individuals are ordered from left to right with a decreasing number of total desirable

alleles, from 14 for individual 1 to 5 for individual 50.
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2.4.1 Solving Example 3 using the GBV approach

The GEBVs of the 50 individuals are calculated using Equation (2.3) and plotted in Figure 2.5.

Figure 2.5: The GEBVs for Example 3.

The GEBV approach would select two individuals with the largest GEBVs, i.e., individuals 1

and 2, both with 14 desirable alleles. A limitation of this approach is that it compromises long-

term potential for short-term gains. In this example, crossing individuals 1 and 2 will produce a

homozygous first locus with undesirable alleles, eliminating the possibility of accumulating desirable

alleles at this locus in subsequent generations.

2.4.2 Solving Example 3 using the OHV approach

The OHV of the 50 individuals are calculated using Equation (2.4) and plotted in Figure 2.6.

Figure 2.6: The OHVs for Example 3.

The OHV approach would select two individuals with the largest OHVs. Individual 3 has the

largest OHV, whereas individuals 1, 2, 4, 5, 13, and 18 tie for the second place. A limitation of

the OHV is the exclusive emphasis on the possibility without consideration of its probability. As
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such, the approach is unable to differentiate the six individuals with the same OHV based on their

different likelihoods of combining nine desirable alleles into one gamete.

2.4.3 Solving Example 3 using the PCV approach

Figure 2.7: The PCV map for Example 3.

The PCVs of the 50 individuals are calculated using Equations (2.5) and (4.6)-(4.8) and plotted

in Figure 2.7. The two subfigures at the top and left are the same population from Figure 2.4 with

horizontal and vertical orientations, respectively. The largest subfigure is a PCV map. It consists

of a 50 × 50 gray-shade matrix representing all PCV values for all possible pairs of breeding

parents involving the 50 individuals in the population. As such, each square representing a PCV

value has an area four times as large as the one that represents an allele in the horizontal and

vertical subfigures. The brightness indicates the PCV for the two individuals directly above and

to the left. The brighter the color in the PCV map, the higher the PCV. We point out four

observations. (1) The PCV is not an additive function of two individuals. (2) The PCV map is

symmetric across the diagonal, since the order of the two parents does not matter in the definition
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of PCV. (3) The diagonal represents PCVs for self-pollination. (4) The highest PCV is achieved

by individuals 5 and 18, which are respectively highlighted in light green and light blue on the

margins. These two individuals should be selected according to the PCV approach. Appendix B

discusses two approaches that can be used to select the pair of individuals with the highest PCV

from a population.

Compared with the GEBV and OHV, PCV has two salient features. First, PCV evaluates each

specific cross. In contrast, the GEBV and OHV calculate an estimated breeding value for each

individual. In the context of mating designs, breeding values are analogous to general combining

ability, whereas the PCV is analogous to specific combining ability. Second, the PCV integrates

recombination frequencies to calculate conditional probabilities. In Example 3, out of the 1275

possible crosses, 711 have a zero PCV value because at least one locus will become homozygous for

the undesirable allele. The remaining 564 combinations have a unique PCV. Therefore, the PCV

map in Figure 2.7 has 565 different shades of gray. In contrast, there is a large number of tied

GEBVs and OHVs in the example.

2.5 Simulation experiments

In this section, we describe and report results of simulated multi-allelic introgression experiments

using the PCV, GEBV, and OHV approaches.

2.5.1 Experiment description

We simulated a polygenic trait consisting of 100 QTL that are responsible for genetic variability

in the trait. The locations of the QTL are distributed as uniform random variable among ten

simulated linkage groups. Each linkage group has from 8 to 12 QTL.

We considered two example trait introgression projects. In both examples the recipient and

donor are homozygous at all QTL. In the first example, the recipient has favorable alleles at 93

of the QTL, while the donor has favorable alleles at the remaining 7. For reference the recipient

has undesirable alleles at QTL numbered: 4, 6, 19, 20, 44, 53, and 58. In the second example the
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recipient has favorable alleles at 80 of the loci, while the donor has favorable alleles at the remaining

20. For reference the recipient has undesirable alleles at QTL numbered: 5, 10, 14, 19, 24, 29, 33,

38, 43, 48, 52, 57, 62, 67, 71, 76, 81, 86, 90, and 95. We use two binary matrices L1 ∈ B100×2 and

L2 ∈ B100×2 to represent respective genomes of recipient and donor, respectively.

Recombination frequencies between linkage groups are set to be 0.5 while recombination between

QTL within linkage groups were randomly generated. The aggregated vector of recombination

frequencies is denoted as r ∈ [0, 0.5]99×1 and plotted in Figure 2.8. Note that the figure shows

recombination between linkage groups as terminal QTL on each linkage group: 10, 19, 30, 40, 50,

62, 73, 81, and 92.

Figure 2.8: The recombination frequencies for the simulation between adjacent pairs of loci.

We implemented the three iterative steps in the Breed function to simulate the introgression

project, with the simulated genomes as the initial population for each example. In subsequent

generations, 100 progeny were sampled from simulated crosses of two individuals selected from the

previous generation. The recipient line is treated as a member of the sample so that backcrossing

is always an option.

Within the Breed function we compared four selection approaches.

• The GEBV approach, which selects two different individuals with the highest GEBVs.

• The OHV approach, which selects two different individuals with the highest OHVs.

• The PCV-I approach, which selects two different individuals with the highest PCV.
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• The PCV-II approach, which selects one (for self pollination) or two (for cross pollination)

individuals with the highest PCV.

One thousand simulation runs were carried out, and the comparison was based on the time and

probability of success, i.e., number of generations to completely introgress all desirable donor alleles.

The simulation was implemented in Octave (Eaton et al., 2015).

2.5.2 Results for Example 1

Figure 2.9 plots the histograms of the normalized breeding values, which is the proportion of

desirable alleles in the genome, of the populations over time. For all selection approaches the sample

representing the first generation consists of the recipient line (with 93% of the desirable alleles),

the donor line (with a 7% of the desirable alleles), and 98 F1 lines consisting of half of the alleles

from the recipient and donor (with 50% of the desirable alleles). The histogram for progeny in

generation 2 is the same for GEBV, PCV-I, and PCV-II because the recipient parent was crossed

to the F1 for these selection approaches. On the other hand the histogram for the OHV approach

is represented by a Doubled Haploid sample from the F1. If the GEBV or OHV approaches are

used, the normalized breeding value will plateau at 95% and 93%, respectively. If either PCV-I

or PCV-II approaches is used, an ideal progeny will have been produced in as early as the 7th

generations and no later than the 11th.

Figure 2.10 compares the probability distributions of the terminal generation for PCV-I and

PCV-II approaches. On average, the PCV-I approach takes 9.4 generations to produce an ideal

progeny, whereas PCV-II takes 8.9 generations. Thus, allowing selfing during the breeding process

increased the efficiency of the project by half a generation in this example.

2.5.3 Results for Example 2

Figures 2.11 and 2.12 reveal similar results of the four selection approaches as Figures 2.9 and

2.10, but as expected all approaches take more generations to plateau. Using the GEBV and OHV

approaches, the normalized breeding values plateau at 86% and 90%, respectively. Out of the 1,000
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simulation repetitions, both PCV-I and PCV-II approaches successfully produced an ideal progeny

996 times, taking an average of 14.8 and 14.7 generations, respectively. In the other four times, the

trait introgression project failed by having at least one locus become homozygous with undesirable

alleles for all individuals in the population. The GEBV and OHV approaches failed in the same

way in all 1,000 simulation runs in both experiments.

2.6 Discussion

The formulation of the multi-allelic introgression problem captured the mathematical essence of

the process and we hope that it will attract other operations researchers, applied mathematicians,

and computational scientists to contribute to genetic improvement projects with more efficient

algorithms. Using time (generations) and probability of success as criteria provides objective mea-

surable criteria for comparing breeding strategies. Missing from these criteria is a consideration

of cost. In general, the number of progeny evaluated every generation can serve as a surrogate

for cost and in future research we will look at the relative impacts of sample size for each genera-

tion of evaluation. While these costs are relatively easy to quantify, considerable thought will be

needed to formulate either social or commercial costs associated with slower introgression of alleles

of economically important traits.

The PCV is a new metric for selection of parents. Rather than sticking to predetermined

breeding strategies such as backcrossing, as widely used for trait introgression, PCV based selection

identifies the pair of individuals whose complementary genotypes have the highest probability to

yield an ideal gamete in two generations. The simulation results demonstrated that the PCV

outperforms the existing approaches GEBV and OHV.

Applicability of our approach is limited by a number of simplifying assumptions summarized in

Section 2.2. Relaxing these will provide potentially fruitful topics for future research. For example, a

similar but more sophisticated definition of the PCV could be designed for autopolyploid perennial

crops such as alfalfa. Also, if desirable alleles of interest are carried by multiple donors, then

modifications are required to extend the PCV. Two approaches have been proposed for introgression



www.manaraa.com

25

of multiple alleles from multiple donors. One is to sequentially introgress alleles from each donor,

and the other is to stack all their desirable alleles into single donor line (Peng et al., 2014a,b). A

couple of optimization approaches have been proposed for the gene stacking problem (Canzar and

El-Kebir, 2011; Xu et al., 2011), which has been proved to be NP-hard (Xu et al., 2011). It would

be a challenging but useful extension to design PCV based breeding strategies for multiple donors.

The selection of more than one pair of parent lines must be coordinated to not only produce enough

seeds to allow for critical recombinations to occur but also expedite the integration of all desirable

alleles into the recipient cultivar(s).

Another direction that deserves investigation in future research is the exploration of more op-

timal breeding strategies. The trait introgression breeding problem formulated in Section 2, even

with the simplifying assumptions, is too complex to be readily solvable by existing optimization

methodology. Although the PCV based multi-allelic introgression outperforms those based on

breeding values, it is unclear to us how much further improvement could be made. A starting

point could be to dynamically adjust the number of individuals evaluated every generation and the

selection approach in each generation in response to the outcome of the previous cross.
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Figure 2.9: Performance of the GEBV, OHV, PCV-I, and PCV-II approaches in 1000 simulation

runs of trait introgression of seven QTL. The vertical axis represents the proportion of desirable

alleles in the genome. Histograms of the proportion of desirable alleles among 100 progeny from

1,000 simulation runs are plotted for each generation. The red curve shows the population mean.
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Figure 2.10: Distributions of the terminal generation numbers of PCV-I and PCV-II approaches.
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Figure 2.11: Performance of the GS, OHV, PCV-I, and PCV-II approaches in 1000 simulation runs

of trait introgression of twenty QTL.
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Figure 2.12: Distributions of the terminal generation numbers of PCV-I and PCV-II approaches.
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CHAPTER 3. DYNAMIC PROGRAMMING FOR RESOURCE

ALLOCATION IN MULTI-ALLELIC TRAIT INTROGRESSION

Abstract

Introgression is a hybridization process that plant breeding companies in the agriculture industry

use to transfer desirable alleles from one crop variety to another. This research addresses the

resource allocation problem in this process, which is iterative and dynamic. Rather than using

the conventional evenly allocating approach, we try to improve the resource allocation strategically

based on the outcome from the previous generation. The methodology we use to solve the problem is

widely used in the literature to solve many other resource allocation problems in different industries.

The problem was motivated from collaborations with scientists in the seed companies, and the

results present an alternative operational strategy that has been shown to be superior in silico

with the potential to lead to significant savings to the industry. We formulated the resource

allocation problem as a Markov decision processes (MDP) model and used backward induction

to obtain optimal resource allocation strategies. We tested the methodology using the same data

set from a case study in the literature, in which the conventional resources allocation approach

was used. Simulation results suggest that the dynamic resource allocation approach from the

MDP model significantly outperformed the conventional approach by reducing the average cost

and time and improving the probability to successfully complete the introgression process. Results

from intermediate generations in an introgression project, although requiring knowledge in plant

genetics to interpret, contain valuable insight on how much resources are necessary to make expected

progress in subsequent generations. Allocating more or less than the necessary amount would lead

to either waste of resources or reduction in the probability of success. The proposed model provides

plant breeders with a more efficient approach to resource allocation to produce better seed varieties

with the highest probability of success.
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3.1 Introduction

3.1.1 Backgrounds

Plant breeding has been defined as the art and science of producing desired characteristics

through artificial selection (Poehlman, 2013). Practiced since the beginning of civilizations, plant

breeders in the 20th century made enormous changes to important agronomic traits, e.g., grain yield

and pest resistance, of cereal crops (Duvick, 1994; Rincker et al., 2014). This was accomplished

through ad hoc adoptions of emerging technologies developed by agricultural, mechanical, electrical

and information engineers. In the 21st century, demands for increasing production of food, fiber

and energy with less water, fuel and fertilizer will force plant breeding to become more efficient

and effective. According to the USDA Long-Term Agricultural Projection Tables (USDA, 2017),

the U.S. soybeans harvested area will decrease from 82.6 million acres in 2014/15 to 79.7 million

acres in 2025/2026. However, despite the decreasing area for harvest, the U.S. soybeans export

amount will need to increase from 50.2 million metric tons in 2014/15 to 52.4 million metric tons in

2025/26. In order to satisfy the increasing demand, the yield of soybeans has to increase from 47.5

bushels per harvested acre in 2014/15 to 51 bushels per harvested acre in 2025/26. Thus, more

advanced and efficient plant breeding techniques are highly required for sustainable improvement

and development.

Plant breeding in the future will require identification and rapid deployment of desirable physical

attributes, also known as phenotypes, that will enable crops to predictably adapt to rapidly chang-

ing environments. Methods for discovery of genetic variants associated with phenotypic variants

have been developed over the last 25 years and are now routinely applied using ‘omics’ technolo-

gies in forward and reverse genetics approaches. Because the genetic variants (alleles) associated

with phenotypic variants are distributed unevenly throughout germplasm collections and breeding

populations the challenge is to aggregate favorable alleles into improved cultivars. The transfer

of a single desirable allele from an otherwise inferior cultivar to an otherwise superior cultivar

is routinely accomplished using marker assisted breeding strategies (Visscher et al., 1996; Frisch
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et al., 1999; Frisch and Melchinger, 2005; Peng et al., 2014a) although recently Cameron et al.

(2017) demonstrated that the efficiency of these routine processes can be doubled by reframing the

objective using principles from operations research.

The more complex challenge of aggregating sets consisting of multiple alleles into cultivars with

predictable adaptive trait phenotypes will require transfer of knowledge from operations researchers

and mathematicians to plant breeders. This issue can be addressed by developing an improved

breeding strategy to rapidly transfer multiple desirable genetic alleles from a donor individual to an

elite recipient individual. In the vernacular of the plant breeder, this is known as trait introgression

involving multiple alleles or multi-allelic trait introgression (MATI) process.

The MATI process can be regarded as a decision making system, of which the components are

in uncertain states due to the stochastic nature of gene reconstruction during crop mating. In the

process, the decision maker or plant breeder has the obligation to obtain the available genotypic and

phenotypic information, decide parents to breed, allocate resources and fulfill goals of the breeding

cycle. In order to accurately depict this decision making system and optimize the MATI process,

mathematical transformations and formulations have been proposed to frame the MATI process as

an engineering system (Han et al., 2017). An algorithmic process with mathematical definitions was

designed for simulation, as well. In the paper, parental selection was addressed as a key procedure,

which can affect the result dramatically. A new metric called the Predicted Cross Value (PCV)

with the assistance of genetic markers for parental selection was proposed in the paper. The PCV

was defined as a quantification metric for any pair of selected breeding parents. With the help of

the PCV, significant improvements were demonstrated as well as the great potential for further

research on MATI process.

As pointed out in Han et al. (2017), in addition to parental selection, the resource allocation also

plays a crucial role in improving the efficiency of the MATI process. From such point of view, in this

paper we expand our discussion on the decision making problem of resource allocation for MATI

and improve the breeding strategy. Because of the dynamic and uncertain states of the system, we

apply the Markov decision processes (MDP) model to frame MATI processes. The MDP model is a



www.manaraa.com

33

technique for solving stochastic sequential decision making problems (Puterman, 2014). The MDP

model has been proved to make contributions to various practical decision making projects, such as

optimal replacement policy for a motion picture exhibitor (Swami et al., 2001) or the vehicle mix

decision in emergency medical service systems (Chong et al., 2015), which share many similarities

with MATI processes.

The remainder of the paper is organized as follows. In section 2, a brief introduction of the

MATI process via a flowchart is proposed and an algorithmic simulating process for the MATI is

discussed. The statement of the resource allocation problem for the MATI process is captured, as

well. In section 3, we define the Markov decision processes model to solve the resource allocation

problem. In section 4, the results from computer simulations demonstrate the advantage on a

hypothetical case study. We present the results on the tradeoffs among total budget, time and

probability of success for the project. Under different total budget scenarios we analyze how the

budget is allocated and determine the most cost-efficient total budget, as well. We also compare the

MDP model with static resource allocation breeding strategies to demonstrate the improvement.

In section 5, the conclusion and future work directions are discussed.

3.1.2 MATI Process and Resources Allocation Problem

In this section, we present a flowchart to describe the work flow for the MATI process, design

a mathematical algorithmic simulating process and propose the problem statement. Recently,

the work flow was proposed to describe the general MATI process (Han et al., 2017) without

resource constraints such as deadline or budget limit, which will affect breeding projects . Thus,

new components for resource allocation are brought into the work flow to make comprehensive

introduction of the MATI process. In the last part of this section, with the necessary introduction,

the problem statement for the resource allocation in the MATI process is proposed.
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3.1.2.1 MATI Process Introduction

The work flow for the MATI process is presented in Figure 3.1. The MATI process begins

with the “Start” step, in which at least one elite recipient individual and one donor individual

are available. In most annual crops, both elite and donor individuals are homozygous throughout

their genomes. The majority of alleles in the donor are undesirable, but it does have desirable

versions of alleles that the elite individual is lacking at several loci. The goal of this process is to

achieve an ideal individual inheriting all the desirable alleles from both donor and elite individuals

within the provided resources. After the “Start” step, the process involves a loop of check boxes

and steps: check box “Genotype ideal ?”, check box “Resource enough?”, step “Resource

allocation”, step “Selection” and step “Reproduction”.

We briefly review these check boxes and steps here. In the “Genotype ideal?” check box, the

genotypic information of current progeny is screened to check if the ideal individual is produced.

If the ideal individual is obtained, the entire process is considered as a “Success”, otherwise, the

process flows to the “Resource enough?” check box. This step involves the resources assessment

and the process continues if the remaining resources are adequate. Usually, the resource consists of

budget and time. A breeding process is associated with different terms of cost, such as genotyping

assays, crossing, growing the crops, and labor. Some costs are fixed, while others are proportional

to the number of crosses made or progeny produced. In practice, there may be a total budget

constraint for the cost through the entire breeding project. In addition to the cost, the breeding

project is often bounded by a deadline, which shall be regarded as a time resource limit. In the

following step “Resource allocation”, the decision maker needs to observe the current status of

the breeding project and allocate the resources based on policies. For commercial breeding projects,

there is revenue associated with the ideal individual when delivered into the market. Hence, for

resource allocation, the decision maker needs to consider revenue with the cost. When the process

reaches the “Selection” step, two breeding parents are selected based on a provided selection

metric. In the “Reproduction” step, the selected breeding parents are mated to produce a new
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generation of progeny and the process flows back to the check box “Genotype ideal?”. In this

MATI process, we assume that the breeding parents would be retained for the next one generation.

Figure 3.1: Flowchart of the MATI process

3.1.2.2 Mathematical Formulations for the MATI Process

According to the flowchart, we design a mathematical algorithmic engineering process for sim-

ulating the MATI process, in which some steps can be optimized such as “Resource allocation”

and “Selection”. For the “Selection” step, random selection, genomic estimated breeding value

(GEBV) (Meuwissen et al., 2001), optimal haploid value (OHV) (Daetwyler et al., 2015) and the

newly designed predicted cross value (PCV) (Han et al., 2017) are possible metrics for determining

the optimal breeding parents for the next generation. For the “Resource allocation” step, the

remainder of the paper will discuss how to apply dynamic programming model to improve the

efficiency. First, we define some major steps in the MATI process.

Definition 9. (Han et al., 2017) “We define the Reproduce function, X = Reproduce(L1, L2, f,K),

as follows. Its input parameters include two binary matrices L1, L2 ∈ BN×2, a vector f ∈ [0, 0.5]N−1,
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and a positive integer number K. Its output is a three-dimensional matrix X ∈ BN×2×K , repre-

senting a random population of K progeny.”

The Reproduce function is defined the same way as the one in Han et al. (2017). In the

definition, a binary matrix with dimension of N × 2 is used to represent the genotype of a diploid

individual with N loci where “0” represents undesirable alleles and “1” represents desirable alleles

at each of the loci. In the function L1 and L2 are the selected breeding parents. The output

X of the function represents the genotype of all the progeny produced by the breeding parents,

whose element Xi,1,k with i ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K} represents the allele on the ith row

(locus) of the first (‘2’ on the second dimension of X representing the second) chromosome set

of the kth progeny in the population. The vector f ∈ [0, 0.5]N−1 represents the recombination

frequency, which reveals the inheritance characteristics of gene reconstruction. The parameter K

in the function decides the number of progeny to produce.

Definition 10. We define the Selection function, [k1, k2] = Selection(X), as follows. Its

input parameter includes a three-dimensional binary matrix X ∈ BN×2×K representing a candidate

population. Its output includes two integers, k1, k2 ∈ Z indicating the indexes of selected parents.

Definition 11. We define the Reward function, Reward(K,X, t, T ) = Revenue(X, t, T )−Cost(K),

as follows. Its input parameters include a positive integer K representing the progeny number, a

three-dimensional binary matrix X ∈ BN×2×K representing a candidate population, a nonnegative

integer t representing the current generation number and a nonnegative integer T representing a

deadline. Its output is a reward consisting of the revenue from population X at generation t given

deadline T and the cost for producing K progeny.

Definition 12. We define the Allocation function,

Kt = Allocation(T, t, f, P t, Bt, Reward),

as follows. Its input parameters include a positive integer T representing the deadline, a nonnegative

integer t representing the current generation number, a vector f ∈ [0, 0.5]N−1 representing the
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recombination frequency, a three-dimensional binary matrix P t ∈ BN×2×K
t−1

(t ≥ 1 and K0 = 2)

representing the candidate breeding population for the current generation (produced by generation

t− 1), a positive number Bt representing the current available budget and the Reward function. Its

output Kt is a nonnegative integer representing the number of progeny to produce for generation t.

Note that if Kt equals 0 with t ≤ T and Bt > 0, the project fails.

With the definitions for three major steps in Flowchart 3.1, the definition for simulating the

entire MATI process is proposed as follows.

Definition 13. We define the MATI function, Ts = MATI(P 0, f, B, Reward, T ), as follows. Its input

parameters include a three-dimensional binary matrix P 0 ∈ BN×2×2 representing the initial breeding

population, a vector f ∈ [0, 0.5]N−1 representing the recombination frequency, a positive integer B

representing the total budget, a Reward function and a positive integer T representing the deadline.

Its output Ts, is the number of generations the process takes to finish the breeding process, which is

determined through the following steps.

Step 0 (Initialization) Set t = 0 and go to Step 1.

Step 1 (Genotype check)

if max
k

{
N∑
i=1

(P ti,1,k + P ti,2,k)

}
= 2N then

return : Ts = t.

end if

Step 2 (Resource check and resource allocation)

Kt = Allocation(T, t, f, P t, Bt, Reward)

if Kt = 0 or t > T then

return : Ts =∞

else

Go to Step 3.

end if

Step 3 (Selection) Obtain [kt1, k
t
2] = Selection(P t) and go to step 4.
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Step 4 (Reproduction) Obtain P t+1 = Reproduction(P t
:,:,kt1

, P t
:,:,kt2

, f,Kt), update t← t+ 1 and

Bt+1 ← Bt − Cost(Kt), then go to Step 1.

3.1.2.3 Resource Allocation Problem in the MATI Process

In this section we propose the problem definition for the resource allocation step in the MATI

process, which is related to designing the Allocation function in the MATI function. The resource

allocation problem for the MATI process is a dynamic decision making problem. The plant breeder

needs to determine how many progeny to produce according to the current generation number,

the deadline, the funds remaining from the overall budget, the cost and revenue function and the

available progeny at the beginning of each generation. This decision is a key factor affecting the

MATI process because it affects the number of offspring produced in each generation as well as the

cost and revenue. In each generation, producing more progeny can increase the cost but also the

probability of obtaining a more promising genotype. The offspring’s genotype and the amount of

time spent on the process together determine the revenue of a project. Intuitively, the earlier a new

genotypically designed product (i.e., offspring) can be delivered to the market, the more market

share and revenue a company may attain. Hence, designing the policy for resource allocation (i.e.,

how many progeny to produce at each generation) to maximize the expected net present value at the

beginning of a breeding project can be regarded as the general problem statement of the resource

allocation problem in MATI process.

We frame the resource allocation problem as a dynamic programming problem. The state

describing the status of a breeding project shall consist of genotypic indicators and the budget

information. According to metrics such as GEBV or PCV, we can convert genotypic information

into a number and use an interval to cover a group of progeny. Associated with the budget, the

state is denoted as a combination of available budget and the metric interval for certain genotypes.

By carefully designing the metric intervals, we can make the state space discrete and small enough

to enumerate and cover all potential progeny genotypes.
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The action that the decision maker needs to determine is the progeny number to produce at

each state after selection of breeding parents has been made. This action determines the cost.

Meanwhile, different actions affect the probabilities of transitioning among states, which are stored

in the transition probabilites matrix. In addition, reaching a specific state at a certain generation

will generate revenue. Based on the breeder’s estimation, the revenue may not only be decided

by the state, but also determined by the current generation number and deadline. There will be

a decision policy describing a series of actions to optimize the expected revenue of the breeding

project.

In such manners, with a discount factor, the objective of a breeding project can be formulated

as determining the optimal policy to maximize the expected net present value in terms of rewards

subjected to the deadline and budget. In mathematical formulations, the objective of this resource

allocation problem can be stated as:

maxπ Eπs {
∑T

t=0 λ
trt(a, s, T )}.

Herein, s represents the state; a represents the action; T represents the deadline; r represents the

reward function; λ represents the discount factor and π represents the decision policy.

3.2 Material and Methods

The dynamic programming structure of the MATI process makes Markov decision processes

(MDP) an appropriate approach for solving the stochastic decision making problem. In this section,

we formulate an MDP model with finite horizon to identify the optimal resource allocation strategy,

which is applied in the Allocation function of the described process.

3.2.1 Model Definition

In an MDP model, there are five major components including decision epochs, states, actions,

trasition probabilities and rewards. The detailed notations for these components are as follows.

Decision epoches: We define the decision epoch as the beginning of each breeding genera-

tion, denoted as {1, 2, 3, ..., T} and T is the deadline of a breeding project. Decisions like parental
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selection, resource allocation, etc., are made at each decision epoch. We assume the MATI process

generally has a specified deadline, which implies that the MDP model has a finite horizon.

States: For any given sample of progeny P , we define a function V (P ) to measure the progress

in the MATI process, which takes the values within the interval [V (P 0), V (P Ideal)], with P 0 and

P Ideal denoting the original sample of progeny and a sample that includes an ideal individual

(with all alleles being desirable). Various definitions of breeding values, such as GEBV, OHV

and PCV, could be used for this function. Due to the enormous space of all possible samples

of progenies, there is potentially a large number of possible values for V . For computational

tractability, as illustrated in Figure 3.2, we group all possible V values into a small number of

intervals m0,m1,m2, ...,mG−1,mG, where G is a predetermined integer.

Figure 3.2: Genotype indicator

Next define the state space S as:

S = (mg, b) ∪ {failure} ∪ {success}, g ∈ {1, 2, ..., G− 1}, b ∈ {1, 2, ..., B − 1, B},

where (mg, b) is a 2-tuple. In the 2-tuple, mg represents the metric interval indicating the genotype

status and b represents the remaining budget for the breeding project. In the definition, B represents

the total budget at the beginning of the process. The design of metric intervals is associated with

the preference of the decision maker and shall not be fixed. We will propose one possible approach

in the case study section for designing the metric interval.

Actions: The action space is denoted as A =
⋃
s∈S As = {0, 1, 2, ..., amax} representing the

number of progeny to produce at each decision epoch. The maximum number of progeny that can

be produced is set as amax for each generation determined by reproductive biology of the plant

species. In the remainder of this paper, action a is used to substitute K in the algorithmic process

for Allocation function.
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Transition Probabilities: In the MDP model, we use W a
i,j to denote the transition probability

from interval mi in one generation to mj in the next generation under action a. One fact of our

MDP model is that once the intervals are determined, W a only depends on the action a and is

stationary at different epochs. According to the assumption that the breeding parents are retained

to generate a new sample of progeny for the subsequent generation, the process either advances

to the next interval or stays in the same one but never moves backwards, i.e., W a
i,j = 0 if j < i.

The matrix W a could be estimated by simulations recording the information of action, the progeny

produced at each generation and the hierarchical kinship information of mating. With the W a

matrix, we are ready to define the transition probabilities matrix, which consists of the probability

of transitioning from one state s to another state s′ under action a, i.e., Pt(s
′|s, a).

Definition 14. Given action a, the transition probabilities matrix can be defined as a parti-

tioned matrix Ma as follows:

Ma =



S>B S>B−1 . . . S>B−a S>B−a−1 S>B−a−2 . . . S>1 failure success

SB 0 0 . . . W̄ a 0 0 . . . 0 0 Ŵ a

SB−1 0 0 . . . 0 W̄ a 0 . . . 0 0 Ŵ a

SB−2 0 0 . . . 0 0 W̄ a . . . 0 0 Ŵ a

...
...

... . . .
...

...
...

. . .
...

...
...

Sa+1 0 0 . . . 0 0 0 . . . W̄ a 0 Ŵ a

Sa 0 0 . . . 0 0 0 . . . 0 1− Ŵ a Ŵ a

Sa−1 0 0 . . . 0 0 0 . . . 0 1 0

...
...

... . . .
...

...
... . . .

...
...

...
...

S1 0 0 . . . 0 0 0 . . . 0 1 0

failure 0 0 . . . 0 0 0 . . . 0 1 0

success 0 0 . . . 0 0 0 . . . 0 0 1


where W̄ a = W a

1:G−1,1:G−1, Ŵ a = W a
1:G−1,G and Sb = [(m1, b), (m2, b), ..., (mG−2, b), (mG−1, b)]

> is

a vector representing G− 1 states. Here, Pt(s
′|s, a) = Ma

s,s′ , ∀t < T .
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Rewards: For an MDP model, the reward rt(s, a) received at epoch t is decided by the state

s ∈ S and action a ∈ As, which can be either positive or negative. In our MDP model for the

MATI process, the reward is defined as rt(a, s, T ) = −C(a) + Rt(s, T ), where C(a) is the cost

function for producing a progeny and Rt(s, T ) is the revenue function at epoch t associated with

state s and deadline T .

3.2.2 Solving the MDP model

Our finite horizon MDP model can be efficiently solved by the backwards induction method,

which is introduced as follows.

The Backward Induction Algorithm: (Puterman, 2014)

Step 1. Set t = T and u∗T (s) = rT (s) for all s ∈ S.

Step 2. Set t← t− 1 for t and compute u∗t (st) for each st ∈ S by

u∗t (st) = max
a∈Ast

{rt(a, st, T ) + λ
∑
s′∈S

Pt(s
′|st, a)u∗t+1(s

′)}. (3.1)

and

A∗st,t = arg max
a∈Ast

{rt(a, st, T ) + λ
∑
s′∈S

Pt(s
′|st, a)u∗t+1(s

′)}. (3.2)

Step 3. If t = 1, stop. Otherwise return to step 2.

Herein, we use π = (d1, d2, ..., dT−1) to denote a policy, where dt : S → As is the decision rule

prescribing the procedure for action selection in each state at epoch t. rt(at, st, T ) denotes the

random reward received at epoch t < T and rT (sT ) denotes the terminal reward. vπT (s1) denotes

the expected total reward over the decision making horizon if policy π is selected and the system

is in state s1 at the first decision epoch. With the discount factor λ ∈ [0, 1), the expected total

discounted reward will be

vπT (s1) = Eπs1{
∑T−1

t=1 λ
t−1rt(at, st, T ) + λT−1rT (sT )}.

And the total expected reward obtained by using policy π at epochs t, t+ 1, ..., T − 1 will be
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uπt (st) = Eπst{
∑T−1

n=t λ
n−1rn(an, sn, T ) + λT−1rT (sT )},

and uπT (sT ) = rT (sT ).

Suppose u∗t , t = 1, ..., T and A∗st,t, t = 1, ..., T −1 satisfy equation (1) and (2). Let d∗t (st) ∈ A∗st,t

for all st ∈ S, t = 1, ..., T −1 and let π∗ = (d∗1, ..., d
∗
T−1). Then, π∗ is the optimal policy and satisfies

vπ
∗

T (s) = supπ v
π
T (s), s ∈ S

and

uπ
∗
t (st) = u∗t (st), st ∈ S for t = 1, ..., T .

3.2.3 Case Study

This section introduces a simulation-based case study for the MDP model to solve the resource

allocation problem in MATI process. In this case study, we propose a budget, time and probability

of success criteria to assess a breeding strategy. We also discuss how the budget is allocated through

out the process and how to find the most cost-efficient total budget. For purposes of illustrations,

we compare static budget allocation strategies and dynamic budget allocation strategy. All the

simulations and case studies are implemented in MATLAB/Octave.

3.2.3.1 Breeding Project Setup

We consider a hypothetical multi-allelic trait introgression project for a case study with the

same data structure as the simulation example 1 in Han et al. (2017). The detailed data is in the

supplementary material. Table 3.1 contains all the parameters for the case study.

3.2.3.2 Preliminary Simulation

Herein, we introduce one possible way to construct the intervals for state space. In order

to estimate the intervals, we run 100 preliminary simulations for each possible non-zero action

a ∈ {100, 200, ..., 1000}.
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Table 3.1: Parameters

Parameter Value Interpretation

amax 1000 maximum progeny number for one generation

A {0, 100, 200, ..., 900, 1000} action space

C(a) 10a cost function

Rt(s, T ) 2000000− 100000t nominal market value (revenue) function

rt(s, T ) Rt(s, T )I(s = success)I(t ≤ T ) reward function

T 8 deadline (in number of generations)

B $11000, $12000, ..., or $80000 budget scenarios

Preliminary Simulation:

Step 1 Let P 0 denote the initial population and LE, LD denote the elite recipient and donor

individuals respectively, where P 0
:,:,1 = LE and P 0

:,:,2 = LD.

Step 2 Set G = 0, which represents the largest terminal generation number.

Step 3 Set m0 = PCV(LE, LD, f), in which f represents the recombination frequency.

Step 4

for a = 100 : 100 : 1000 do

for n = 1 : 100 do

g = 0

while max
k

{
N∑
i=1

(P gi,1,k + P gi,2,k)

}
< 2N do

[kg1 , k
g
2 ] = arg maxk1,k2{PCV(P g:,:,k1 , P

g
:,:,k2

, f)}

pn,ag = PCV(P g
:,:,kg1

, P g
:,:,kg2

, f)

P g+1 = reproduce(P g
:,:,kg1

, P g
:,:,kg2

, f, a)

g = g + 1

end while

G = max(G, g)

end for

end for
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We construct the state space based on parameter G and each pn,ag estimated from the pre-

liminary simulations. Since F1 will be the same deterministic individual after generation 1 for

every simulation, we set m1 = pn,a1 ,∀n, a. On the other hand, mG will be the deterministic

PCV value of the ideal individual, which means mG = pn,aG = PCV(LIdeal, LIdeal, f). With the

preliminary simulations, we define the interval mg as mg = [minn,a(p
n,a
g ),minn,a(p

n,a
g+1)] where

2 ≤ g ≤ G − 1, n ∈ {1, ..., 100}, a ∈ {100, 200, ..., 1000}. The state space construction will be

trivial based on the definition.

After the construction of the state space, we need to estimate matrix W a for the transition

probabilities matrix. First, we define function mk = Interval(p), as the unique interval to which

p belongs, i.e., p ∈ mk. Also, we need to define another matrix Na ∈ IG×G saving the number of

simulations, which is related to the transition between two intervals under action a.

for a = 100 : 100 : 1000 do

for n = 1 : 100 do

g = 1

while pn,ag < mG do

mk1 = Interval(pn,ag )

mk2 = Interval(pn,ag+1)

Na
k1,k2

= Na
k1,k2

+ 1

g = g + 1

end while

end for

end for

W a
i,j =

Na
i,j∑

j N
a
i,j
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3.3 Results

This section covers the results and analysis on the performance about the MDP model in the

MATI process. Tradeoffs among the criteria of budget, time and probability of success are shown in

Figure 3.3. The detailed allocation policy through the process based on the MDP model is shown in

Figure 3.4 and the most cost-efficient total budget for our case study is found in Figure 3.5. Last, we

make comparison between static budget allocation strategies and the MDP model based dynamic

budget allocation strategy. We illustrate the randomly picked simulation runs for visualization in

Table 3.2 and Table 3.3 and show the comparison result in Figure 3.6 to demonstrate the advantage

of dynamic resource allocation strategy.

3.3.1 MDP Model Performance Assessment

In order to assess the performance of a strategy for the MATI process, we propose the budget,

time and probability of success quantitative criteria. Such criteria are essential for evaluation,

improvement, and optimization of the process. In this section, with the simulated state space and

estimated transition probabilities, we solved the MDP model for all the budget scenarios. Under

the derived optimal policy, we calculate the probability of reaching each state at each decision

epoch.

According to the probabilities of reaching success at each discrete epoch (generation) under

all budget scenarios, Figure 3.3 illustrates the tradeoff among total budget, time and probability

of success for the MATI process. For example, when the total budget is $11,000, the project can

successfully finish in 6,7 or 8 generations with probability about 2%, 20% or 44%, respectively. The

project also has about 34% probability to fail. At the beginning of all the total budget scenarios,

increasing total budget can increase the probability of success or decrease the number of generations

that the project requires to finish successfully. When the budget is beyond a certain point, e.g.,

more than $50,000, increasing the budget further cannot make the project finish earlier or increase

the probability of success. The performance of the model is irrelevant to the total budget when the

budget exceeds this point.
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Figure 3.3: BTP graph with T = 8. In the figure, the horizontal axis is different total budget

scenarios of the breeding project and the vertical axis represents a stacked histogram of the prob-

abilities of reaching success at different generations. In the figure, “GX” label means that the

breeding process successfully finishes in X generations and “Failure” means no ideal individual is

produced when the budget or the time is depleted.

3.3.2 Budget Allocation and Optimal Total Budget

The results from the MDP model provide the plant breeders with intuition about how to ef-

ficiently allocate the budget through the entire breeding process and how to identify the most

cost-efficient total budget.

In Figure 3.4, we observe that the model prefers to allocate more budget on the early stage

with inadequate budget. Along with increasing the budget, more resources are allocated to the

middle generations of the project. When the budget is over abundant, the model sticks to a fixed

policy of allocating the budgets. The reason for this pattern is that the model prefers to allocate

more resource at the beginning of project to produce progeny inheriting as many desirable alleles

as possible to increase the probability of success when the budget is inadequate. When the budget

increases, the model tends to save resources on the early stage of the project and efficiently allocates
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Figure 3.4: Budget allocation with T = 8. In the figure, the horizontal axis is different total budget

scenarios of the breeding project and the vertical axis represents the proportion of budget allocated

in different generations. Different gray scale are used for different generations.

the budget through the entire process. When the budget is more than adequate, the proportion of

budget allocated in each generation is fixed.

Figure 3.5 illustrates the relation between expected total revenue and budget as well as the

marginal return and the budget. Generally speaking, the expected total revenue will increase as

the total budget is increased. When the budget is more than sufficient, revenue increments will

diminish to zero. The intersection of unit marginal return and the derivative curve indicates the

optimal total budget is about $32,000. When the total budget exceeds the optimal point, the ratio

between the revenue increments and budget increments is less than one.

3.3.3 Comparison with Static Budget Allocation Strategies

We demonstrate the different outcomes of the breeding process using static and dynamic re-

source allocation strategies in this section. For the static strategies, the Kt (or action a) in each



www.manaraa.com

49

Figure 3.5: Profits and Budgets. In the figure, the blue pentagrams represent the estimation

results from simulations and the blue curve represents a nonlinear regression with model y =

a1+a2×exp(a3x) for the estimation. The red squares represent the difference between the adjacent

estimations and the red cure represents the derivative of the expected total revenue curve. The red

horizontal line is the marginal return equals to one unit increment of total budget, which is $1,000.

generation t is fixed in the range from 100 to 700 progeny per generation with increments of 100.

For the dynamic strategy, the optimal policy from the MDP model is applied to allocate resources.

The comparison is conducted under the optimal total budget, i.e., $32,000 and the deadline is set

to be large enough that the project either succeeds or terminates with budget depleted.

Table 3.2 and Table 3.3 are two examples of randomly selected simulations. Table 3.2 shows

the result simulated from the static strategy with Kt = 400 for each generation t, whereas Table

3.3 shows the result from the MDP model based strategy. In both tables, the first column is the

generation number. In the second column, at each generation, all the progeny produced in the

simulation are put abreast to each other to form a wide rectangle and the width of the rectangle

reflects the sample size. Here we use gray pixels to represent the desirable alleles whereas black

pixels to represent the undesirable alleles. Those individuals highlighted by white are the selected
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Table 3.2: Generation 2 to generation 8 of one random simulation run with fixed budget allocation

G Breeding population log10 PCV

2 –11.69

3 –6.89

4 –4.98

5 –2.76

6 –1.38

7 –0.25

8 0

breeding parents and several ideal individuals are produced at the last generations. The third

column of each table is the base 10 logarithm of PCV value of the selected breeding parents. The

fundamental difference between these two resource allocation strategies is that the MDP model

allows the decision maker to dynamically allocate the resources based on the outcomes from the

previous generation. Note that the dynamic approach produced 17 desirable progeny in seven

generations, whereas the fixed plan produced about twice as many desirable progeny, but required

an extra generation.

The 500 repetitions of simulations for each strategy (100 to 700 progeney per generation for

static strategy and the MDP based strategy) under a $32,000 total budget reveals the advantage

of the MDP based strategy over the static budget allocation strategies. Among static allocation

strategies, $4,000 per generation (Kt = 400) appears to be the best. Spending less for each

generation requires more generations to succeed while spending more for each generation brings a

higher risk of failure due to the insufficient total budget. Compared with the strategy of $4,000

per generation, the MDP based strategy has over 20% probability to finish in 6 generations and

about 65% probability to finish in 7 generations, which is higher than the probabilities of success
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Table 3.3: Generation 2 to generation 8 of one random simulation run with MDP based budget allocation

G
B
re

e
d
in

g
p
o
p
u
la
tio

n
lo
g
1
0
P
C
V

2
–
1
3
.4
5

3
–
9
.2
7

4
–
4
.9
4

5
–
1
.7
7

6
–
0
.5
5

7
0
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Figure 3.6: Comparison under Optimal Budget. The left 7 stacked bars represent the static budget

allocation strategies with different progeny number per generation while the last barplot represents

the MDP based strategy.

in the same generations with Kt = 400. The numerical values of the comparison can be found in

the following Table 3.4.

3.4 Discussion

In this paper, we discussed the MATI process and the resource allocation problem. We updated

the work flow of MATI process by adding the components of resource allocation. A mathematical

algorithmic simulating process was then formulated for the MATI process and we addressed the re-

source allocation challenge. We used Markov decision processes with backwards induction method

due to the dynamic programming characteristics of the problem. The performance of the MDP

model was examined for a hypothetical breeding project with realistic estimated parameters. We

proposed three quantitative assessing criteria and corresponding figures for visualization. We ana-

lyzed the pattern in resource allocation through the process under different budget scenarios and

found the optimal total budget for this hypothetical project, as well. Under the optimal budget,
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Table 3.4: Comparison under Optimal Budget

Progeny/generation G6 G7 G8 G9 G10 G11 Failure

100 0 1.37% 22.16% 63.33% 12.55% 0.59% 0

200 0.20% 12.55% 70.20% 17.06% 0 0 0

300 0 38.63% 58.24% 3.14% 0 0 0

400 1.37% 60.39% 38.24% 0 0 0 0

500 3.33% 66.86% 0 0 0 0 29.80%

600 2.55% 0 0 0 0 0 97.45%

700 0 0 0 0 0 0 100%

MDP 22.92% 65.07% 10.20% 1.29% 0 0 0.52%

the MDP model based strategy was compared with the static budget allocation strategies and we

demonstrated the improvement brought by dynamically allocating the resources.

Even with the outstanding improvement in terms of time and probability of success, one un-

resolved issue is that we cannot guarantee the global optimality of the policy because of the com-

plexities in the problem. As pointed out, the construction of the state space is highly related to

the preference of the decision maker. On the other hand, due to assumptions made for our model,

the result for continuous actions or budgets is still unknown. From such points of view, we shall

see the need for many further research studies on the MATI process.

Also, estimating the cost and revenue function is another possible economical research topic

for further discussion. Plant breeding organizations have their own forecasting models about the

market value of a certain genotype as well as its revenue associated with time when it is delivered

to the market. Thus, the research on the discussion about cost and revenue functions may reveal

more economic discoveries about the trait introgression problem and bring more inspirations.
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CHAPTER 4. THE PREDICTED CROSS VALUE FOR MULTI-PAIR

PARENTAL SELECTION IN TRAIT INTROGRESSION PROCESS

Abstract

The Predicted Cross Value (PCV) designed for one donor and one recipient has been proved

to outperform the conventional selection metrics for parental selection in the trait introgression

process. As per the request of practical introgression projects, we extend the PCV for multi-pair

parental selection in this chapter, which we refer to as the NPCV metric. The updated metric

takes the estimates of recombination frequencies as input parameters and calculates the probability

that a gamete with desirable alleles at all specified loci being produced by a number of pairs of

breeding parents after an arbitrary number of generations. We design set cover models to select the

optimal set of breeding parents based on different metrics. With the simulation based case studies,

we compare this NPCV metric with the conventional GEBV metric, and the results demonstrate

the advantage of this new metric on the efficiency and effectiveness for parental selection. Also, we

recommend some future work directions for improving the trait introgression process.
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4.1 Introduction

In Chapter 2, we introduced the multi-allelic trait introgression process and designed the pre-

dicted cross value (PCV) for one pair of breeding parents. According to the comparisons between

the PCV and the genomic estimated breeding value (GEBV) or the optimal haploid value (OHV)

(Daetwyler et al., 2015), the PCV offered significant advantages by taking the recombination into

consideration. However, as pointed out in the discussion of Chapter 2, because of the simplifying

assumptions, the PCV metric has some limitations, one of which is that the PCV is limited to one

pair parental selection. In practical breeding projects, one pair of breeding parents is not enough

sometimes because the desirable alleles may not be carried by one pair of individuals or one pair

of breeding parents may not produce sufficient seeds like soybeans.

Some research has been conducted to deal with such problems. For the case that the desirable

alleles are carried by multiple individuals, plant breeders are used to combine different alleles from

several individuals together to create one promising donor for the following generations of crossing,

which is referred to as the gene stacking or gene pyramiding procedure. Different approaches have

been proposed for gene stacking or gene pyramiding. Sequentially introgressing alleles from each

individual is one possible approach. Another approach is to pairwise stack all the desirable alleles

into one single individual (Peng et al., 2014a,b). Servin et al. (2004) described another efficient

method to design the pyramiding scheme. Meanwhile, some optimization based methods have been

proposed for gene stacking problem (Canzar and El-Kebir, 2011; Xu et al., 2011), which has been

proved as a NP-hard problem (Xu et al., 2011). However, for such gene stacking or gene pyramiding

problem, one of the major issues is the instability of recovering all the favorable background genes

(Halpin, 2005). During stacking different desirable genes from different individuals, because of the

recombination, there are possibilities that the undesirable alleles are brought into the offspring gene

pool, as well. Thus, even the final offspring successfully carries all the desirable alleles, some of

the desirable background genes may be lost. Hence, a method for combining targeted desirable

genes as well as preserving desirable background genes is needed. On the other hand, for the case

that one pair of breeding parents cannot produce sufficient number of progeny, breeders have to
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select multiple pairs of breeding parents to produce enough progeny for the following breeding

process. Based on the existing problems, an efficient and effective strategy to select multiple pairs

of breeding parents is required not only to combine desirable alleles from different individuals

but also to preserve desirable background genes. The PCV designed in Chapter 2 is able to

quantify the efficiency of selections based on the entire genetic marker set information including

the recombination frequency, which guarantees that the desirable background alleles are maintained

during the parental selection. Inspired by the advantages of the PCV, we design a new NPCV metric

for trait introgression process with multi-pair parental selection.

The remainder of this chapter is organized as follows. First, we propose the definition of the

NPCV. Meanwhile, we update the plumbing calculation system for the NPCV. In addition to the

NPCV, we build a set cover model to select multiple pairs of breeding parents according to the

GEBV for simulating the conventional selection approach. We also build a set cover model for

the NPCV metric and propose a heuristic approach for the optimal parental selection. We next

conduct simulation experiments to compare the efficiency and effectiveness of the GEBV and the

NPCV based approaches. We demonstrate the results via the criteria of cost, time and probability

of success for different approaches and make the discussion for our research and future work at the

end of this chapter.

4.2 Formulations

4.2.1 Simplifying assumptions

Several assumptions made in Chapter 2 to simplify the formulation and illustrate the core

elements of the introgression process are still necessary for proposing the NPCV, which are:

• Consider annual diploid and allopolyploid species such as corn, rice, soybean and wheat with

subgenome specific loci. Extension to perennial and autopolyploid crops, such as alfalfa is

deferred for future research.
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• Consider a single multi-allelic trait, where all segregating loci associated with the trait are

known. Results also apply to multiple traits where all traits are of equal value.

• All marker alleles are either desirable or undesirable. Values of alleles could be modeled as

continuous from some distribution or in many cases, the value of an allele is unknown. We

defer expansion to these situations for future research.

• During evaluation, a sufficient number of informative markers are distributed throughout the

genome at sufficient density to allow estimation of recombination between all adjacent pairs

of markers.

• Recombination events between pairs of adjacent loci are assumed to be independent (Haldane,

1919). Consideration of interference is deferred for future research.

At the same time, we relax two of the assumptions in Chapter 2 for the NPCV design, which are

stated as follows:

• To illustrate the principles, all desirable alleles missing in the recipient can be carried by

one or multiple individuals.

• One or multiple pairs of breeding parents are selected for crossing in each generation.

4.2.2 Preliminary definitions

We use the same notations as Chapter 2 to quantitatively describe the essence of trait intro-

gression. The N by 2 binary matrix, say L ∈ BN×2, denotes the genotype of an individual plant,

where N is the total number of QTL in the genome and the binary value Li,j indicates whether

the allele at locus i of chromosome j is desirable (Li,j = 1) or undesirable (Li,j = 0). As defined in

the Definition 1 in Chapter 2, the Gamete function, g = Gamete(L, J) represents the actual gamete

formation process and the input binary vector J must be a random one following an inheritance
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distribution with parameter r ∈ [0, 0.5]N−1, which is:

J1 =
{ 0 w.p. 0.5

1 w.p. 0.5
, (4.1)

Ji =
{ Ji−1 w.p. 1− ri−1

1− Ji−1 w.p. ri−1

,∀i ∈ {2, ..., N}. (4.2)

The Reproduce function, X = Reproduce(L1, L2, r,K), was defined to represent the reproduc-

tion of selected breeding parents. Its input parameters include two binary matrices L1, L2 ∈ BN×2,

a vector r ∈ [0, 0.5]N−1, and a positive integer number K. Its output is a three-dimensional matrix

X ∈ BN×2×K , representing a population of K progeny, which is determined by first generating

2K independent and identically distributed random vectors from the inheritance distribution with

parameter r, denoted as Jp, ∀p ∈ {1, ..., 2K}, and then setting Xi,j,k = Gametei(L
j , J2k−2+j), ∀i ∈

{1, ..., N}, j ∈ {1, 2}, k ∈ {1, ...,K}.

The targets for parental selection in this chapter has been switched to multiple pairs of breeding

parents, say M pairs. We update the core Breed function to mathematically formulate the breeding

process, which is defined as follows.

Definition 15. We define the Breed new function as G = Breed new(P 0, r,K,M). Its input

parameters include a three-dimensional binary matrix P 0 ∈ BN×2×2, a vector r ∈ [0, 0.5]N−1, and

positive integers K and M . Its output, G, is the number of generations it takes to successfully finish

the process or to terminate with no improvement can be achieved, which is determined through the

following steps.

Step 0 (Initialization) Set t = 0 and go to Step 1.

Step 1 (Evaluation)

If max
k

{
N∑
i=1

(P ti,1,k + P ti,2,k)

}
= 2N or Metric(P t) ≤ Metric(P t−1)

RETURN: G = t.

Else Go to Step 2.

Step 2 (Selection) Obtain [kt1, k
t
2, ..., k

t
2M ] = Select(P t, r,M) and go to step 3.



www.manaraa.com

59

Step 3 (Reproduction) Obtain P t+1
:,:,(m−1)K+1:mK =

Reproduce(P t
:,:,kt2m−1

, P t
:,:,kt2m

, r,K),m ∈ {1, ...,M}, update t← t+ 1, and go to Step 1.

Herein, Metric(·) returns the value of a breeding population based on the given metric.

4.2.3 The NPCV definition

We propose the definition of the NPCV in this section for more realistic introgression problems.

The NPCV is defined as a metric for quantifying the selection of multiple, say 2M individuals

{L1, L2, L3, ..., L2M} as M pairs of breeding parents. For one pair of individuals, the PCV is

defined as the conditional probability of producing a gamete inheriting all the desirable alleles

after 2 generations. For 2M breeding individuals, the NPCV calculates the conditional probability

of producing a gamete inheriting all the desirable after dlog2 2Me + 1 generations. The number

dlog2 2Me+ 1 is derived based on the logic as follows. If there are 2M desirable alleles and each of

them is carried by one individual, at least dlog2 2Me + 1 generations are required to stack all the

desirable alleles into one gamete (Servin et al., 2004). An example with 16 desirable alleles carried

by 16 breeding parents is illustrated by the following Figure 4.1.

The concept of the NPCV is described as follows. Let L1, L2, ..., L2M ∈ BN×2 denote 2M breed-

ing individuals, and let [gi,11 , gi,21 ] denote a random progeny produced by the ith pair of breeding

parents L2i−1 and L2i after generation 1, where gi,11 = Gamete(L2i−1, J) and gi,21 = Gamete(L2i, J),

respectively. In the second generation, [gi,11 , gi,21 ] is randomly crossed with [gj,11 , gj,21 ], which is pro-

duced by the jth pair of breeding parents after generation 1, to produce another random progeny

denoted as [gm,12 , gm,22 ], where gm,12 = Gamete([gi,11 , gi,21 ], J) and gm,22 = Gamete([gj,11 , gj,21 ], J), respec-

tively. In generation 3, this random progeny will be randomly mated to another random progeny

produced after generation 2 to generate new offspring. In each of the consecutive generation, the

available number of random progeny decreases by half. If the number of available random progeny

is odd in a certain generation, one progeny will be left to the next generation as the available

progeny for the random mating process. The NPCV calculates the conditional probability of pro-
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Figure 4.1: Scheme for NPCV

ducing a gamete gm
∗,1
dlog2 2Me+1 = Gamete([gm

′,1
dlog2 2Me

, gm
′,2
dlog2 2Me

], J) inheriting all the desirable alleles

by [gm
′,1
dlog2 2Me

, gm
′,2
dlog2 2Me

] after the dlog2 2Me+ 1 generation.

Definition 16. For given M pairs of individuals {L1, L2, ..., L2M}, the NPCV is defined as the

probability that in generation dlog2 2Me+ 1 a random gamete, gm
∗,1
dlog2 2Me+1, produced by a random

progeny [gm
′,1
dlog2 2Me

, gm
′,2
dlog2 2Me

] will consist only of desirable alleles:

NPCV({L1, L2, ..., L2M}, r) = P (gm
∗,1
dlog2 2Me+1 = 1, ∀i ∈ {1, ...N}).

Here, r is the recombination frequency vector.

The rationale for the NPCV definition is to calculate the probability that none of the undesirable

alleles survives dlog2 2Me + 1 generations of meioses. Similar to the PCV, the essence of this
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approach is to select breeding parents based on their likelihood to produce an ideal gamete by

combining their desirable alleles rather than the fitness of the breeding parents themselves. We

shall notice that the design of this random breeding scheme for the NPCV is not unique and herein,

we just provide with a feasible breeding scheme to derive a new metric for parental selection. Thus,

we can not claim that the NPCV is the optimal approach to select multiple pairs of breeding

parents. Based on such metric, we will design optimization approaches to select breeding parents

that can lead to the largest metric value in the following sections.

4.2.4 The water pipe algorithm for NPCV calculation

We update the polynomial time plumbing algorithm for calculating the NPCV. For 2M breeding

parents, the plumbing system for the NPCV consists of N rows and 4M columns of valves and a

number of water pipes connecting them. The 4MN valves correspond to the 4MN alleles in the

2M breeding parents represented by a set of matrices {L1, L2, ..., L2M}. For notational convenience,

we will use L ∈ BN×4M to denote the set of matrices {L1, L2, ..., L2M}, so Li,j = L
dj/2e
i,2−j%2,∀i ∈

{1, ..., N}, j ∈ {1, ..., 4M}, and % represents taking the remainder. Similarly, the algorithm draws

an analogy between the conditional probability and the water flows through a plumbing system

as the algorithm in Chapter 2. For all i ∈ {1, ..., N − 1}, j ∈ {1, ..., 4M}, and k ∈ {1, ..., 4M},

the volume of the pipe that connects valves (i, k) and (i + 1, j) is denoted as Tk,j,i, where T is a

three-dimensional matrix, which is referred to as the transition matrix and defined as follows.

Definition 17. For a given vector of recombination frequencies, r ∈ [0, 0.5]N−1, the transition

matrix T ∈ [0, 0.5]4M×4M×(N−1) is defined as

T4j−3:4j,4j−3:4j,i ≈



(1− ri)t ri(1− ri)t−1 0.5ri(1− ri)t−2 0.5ri(1− ri)t−2

ri(1− ri)t−1 (1− ri)t 0.5ri(1− ri)t−2 0.5ri(1− ri)t−2

0.5ri(1− ri)t−2 0.5ri(1− ri)t−2 (1− ri)t ri(1− ri)t−1

0.5ri(1− ri)t−2 0.5ri(1− ri)t−2 ri(1− ri)t−1 (1− ri)t


,

∀i ∈ {1, ..., N − 1}, j ∈ {1, ...,M}. (4.3)
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where t = dlog2(2M)e+ 1 and for the rest of elements Tp,q,i /∈ T4j−3:4j,4j−3:4j,i of T ,

Tp,q,i ≈
1− (1− ri)t−2

4M − 4
, (4.4)

In the definition, the reason for the approximately equality sign is that when 2M equals to 2

raised to a certain power, we can achieve equality. When 2M is even but not equals to 2 raised to

a certain power, in some generation during the breeding scheme, a random progeny will be left for

the following generations. Thus, the matrix is just a close approximation. The derivation of the

transition matrix is in the Appendix B. Here, although the matrix is an approximation for some

scenarios, the following simulation based on this matrix exactly simulates the breeding process and

the results derived shall be valid.

We define the water matrix W ∈ [0, 1]N×4M to represent the amounts of water flowing inside the

plumbing system. For all i ∈ {1, ..., N} and j ∈ {1, ..., 4M}, Wi,j represents the amount of water

that flows out of the jth valve in the ith row. This value can be interpreted as the probability that

the first i alleles in the gamete gm
∗,1
dlog2 2Me+1 are desirable and that the ith allele is inherited from

the jth chromosome of the breeding parents.

Definition 18. We define the water matrix W ∈ [0, 1]N×4M as

Wi,j = P (g1 = ... = gi = 1, gi = Li,j),∀i ∈ {1, ..., N}, j ∈ {1, ..., 4M}. (4.5)

Proposition 3. The water matrix can be calculated as follows.

W1,j =
1

4M
L1,j ,∀j ∈ {1, ..., 4M}; (4.6)

Wi,j = Li,j

4M∑
k=1

Tk,j,i−1Wi−1,k,∀i ∈ {2, ..., N}, j ∈ {1, ..., 4M}. (4.7)

Proposition 4. The NPCV is the summation of the last row in the water matrix:

NPCV({L1, L2, ..., L2M}, r) =

4M∑
j=1

WN,j . (4.8)

The proofs for these propositions are similar to the ones in Chapter 2.
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4.2.5 Illustrative example

We illustrate the plumbing system for the NPCV calculation with the following examples.

Example 4. The 6 breeding parents are both ideal lines L1 = L2 = ... = L5 = L6 =



1 1

1 1

1 1

1 1

1 1


and

r =

[
0.2 0.1 0.4 0.5

]>
.

Figure 4.2: Illustration of the plumbing system for Example 4.

The plumbing system corresponding to Example 1 is illustrated in Figure 4.2. Since all breeding

parents are already ideal lines, their NPCV equals to 1. Albeit trivial, this fact is verified by the

plumbing system in Figure 4.2, where all the valves are open, and thus 100% of the water that is

poured in will get its way out.



www.manaraa.com

64

We now illustrate the water pipe algorithm for calculating the NPCV of the following example.

Example 5. The 6 breeding parents are L1 =



1 1

1 0

1 1

0 1

1 1


, L2 =



0 1

1 1

1 0

0 1

1 0


, L3 =



1 0

0 1

1 0

0 1

1 0


, L4 =



1 0

1 1

1 1

1 0

1 1


, L5 =



1 1

1 0

0 1

1 0

0 1


, L6 =



0 1

1 0

0 1

1 1

0 1


and the recombination frequencies vector is the same as

in Example 4.

Figure 4.3: Illustration of the plumbing system for Example 5.
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The plumbing system corresponding to Example 5 is illustrated in Figure 4.3, in which we

removed those water pipes whose immediate upstream valves are closed.

4.3 Metric Optimization

The GEBV and NPCV are designed as the metrics to quantify the selection of breeding parents,

based on which we can optimize the parental selection in trait introgression. For the GEBV and

NPCV, we propose set cover models to choose the optimal breeding parents. For the NPCV,

because of the complexity of the model, we propose a heuristic algorithm to derive the solution.

4.3.1 A set cover model for GEBV selection

Given a population of candidate individuals and required number of breeding parents in each

generation, we present a set cover model to select a group of breeding parents with the maximum

overall GEBV. The conventional GEBV based selection approach selects breeding parents based

on the GEBV as the equation 4.9, which measures the fitness of each individual. This metric

quantifies the single merit of each individual and those with the largest GEBV shall be selected as

the breeding parents according to the metric.

N∑
i=1

(Li,1 + Li,2). (4.9)

The set cover model takes two parameters as input: the set of progeny of individuals P ∈

BN×2×K with K being the total number of progeny in this population and the required number of

pairs of breeding parents M,M ∈ I+. That is to say, 2M individuals will be selected. There is one

set of decision variables: x = (x1, x2, ..., xK) ∈ BK×1 with xk indicating whether (xk = 1) or not

(xk = 0) individual k is selected as a breeding parent, for all k ∈ {1, ...,K}.

The optimization model is presented in (4.10)-(4.13), which is an integer linear program (ILP).

The objective function (4.10) calculates the overall summation of GEBVs of the selected breeding

parents, which is to be maximized. Constraint (4.11) requires that exactly 2M breeding parents

are selected from the population. Constraints (4.12) requires that at least one desirable allele is
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present at each locus (each row in the matrix) among all the selected breeding parents. This ILP

model can be efficiently solved to optimality by existing algorithms and software.

max
x

N∑
i=1

2∑
j=1

K∑
k=1

Pi,j,kxk (4.10)

s. t.
K∑

k=1

xk = 2M (4.11)

2∑
j=1

K∑
k=1

Pi,j,kxk ≥ 1 ∀i ∈ {1, ..., N} (4.12)

x binary. (4.13)

The output x∗ of the model indicates which individuals are selected as breeding parents achieving

the largest overall GEBV. We group those selected individuals as {L1, L2, ..., L2M}∗ in which Lm =

P:,:,Sm , x∗Sm = 1, ∀m ∈ {1, 2, ..., 2M}, Sm ∈ {1, ...,K} and when mi 6= mj , we have Smi 6= Smj . The

binary constraint on variable x in the model indicates that self pollination is not considered in this

ILP. Self pollination for multiple pairs parental selection as a special case increases the complexity

of the problem. For instance, we need to consider how many pairs of self pollination is allowed

for one progeny and we need to determine if one progeny is allowed to conduct self pollination

and cross with other progeny simultaneously. Thus, this special case provides with more potential

future research topics and it could be discussed in the future work. At the same time, there could

be multiple optimal solutions for one candidate population P . Also, our model only conducts the

selection but not pairs the selected parents up, which means the groups consist of {L1, L2, ..., L2M}∗

with different orders are considered as the same result.

4.3.2 Heuristic NPCV optimization

Given a population of candidate individuals and required number of breeding parents, we present

another set cover model as (4.14)-(4.19) to select a group of breeding parents with the maximum

NPCV.
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max
x

NPCV({L1, L2, ..., L2M}, r) (4.14)

s. t.
K∑

k=1

xk = 2M (4.15)

xSm = 1 m ∈ {1, 2, ..., 2M}, Sm ∈ {1, ...,K} (4.16)

Lm = P:,:,Sm m ∈ {1, 2, ..., 2M}, Sm ∈ {1, ...,K} (4.17)

2∑
j=1

K∑
k=1

Pi,j,kxk ≥ 1 ∀i ∈ {1, ..., N} (4.18)

x binary. (4.19)

Herein, when mi 6= mj , we have Smi 6= Smj

The set cover model for the NPCV metric is similar to the one for the GEBV metric. However,

the nonlinear definition of the NPCV makes the model too complex to find the exact optimal

solution. Thus, we propose the following heuristic algorithm for finding a solution.

Step 0 Derive x0 by solving model (4.10)-(4.13) and get {L1, L2, ..., L2M}0 where Lm = P:,:,Sm and

x0Sm = 1,m ∈ {1, ..., 2M}, Sm ∈ {1, ...,K}.

Step 1 Set NPCVmax = NPCV({L1, L2, ..., L2M}0, r) and {L1, L2, ..., L2M}max = {L1, L2, ..., L2M}0.

Step 2 (Iteratively Update)

for i = 1 : 2M do

{L1, L2, ...L2M}i = arg maxLi∈{L1,...,LK}/{L1,...,L2M}max NPCV({L1, ..., Li, ...L2M}max, r)

if NPCV({L1, L2, ...L2M}i, r) > NPCVmax then

NPCVmax = NPCV({L1, ..., Li, ...L2M}i, r) and {L1, ..., L2M}max = {L1, ..., Li, ...L2M}i

end if

end for
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4.4 Simulation Experiments

In this section, we describe the case study on two simulated experiments using both of the

GEBV and NPCV approaches on the same data set in Chapter 2 and we report the results, as well.

4.4.1 Experiment description

We consider a hypothetical genotype consisting of 100 QTLs. The locations of QTLs are

uniformly and randomly distributed among ten simulated linkage groups with each linkage group

having from 8 to 12 QTLs. Two example trait introgression projects are considered. The setup of

the parameters is the same as Chapter 2, which is reviewed as follows:

The recipient and donor individuals are homozygous at all QTLs in both projects. The recipient

in the first example has desirable alleles at 93 of the QTLs and the donor carries the remaining 7

desirable alleles. In the recipient, the undesirable alleles are at C1Q4, C1Q6, C2Q9, C3Q1, C5Q4,

C6Q3, and C6Q8, where CiQj denotes the jth QTL in chromosome i. The recipient in the second

example has desirable alleles at 80 of the QTLs and the donor carries the remaining 20 desirable

alleles. In the recipient, the undesirable alleles are at C1Q5, C1Q10, C2Q4, C2Q9, C3Q5, C3Q10,

C4Q3, C4Q8, C5Q3, C5Q8, C6Q2, C6Q7, C6Q12, C7Q5, C7Q9, C8Q3, C8Q8, C9Q5, C9Q9, and

C10Q3. A Recombination frequencies vector is given in Table 4.1 for the simulation.

We implemented the Breed new function to simulate the introgression project, with the simu-

lated genomes as the initial population for each example. In subsequent generations, 2 to 10 pairs

of breeding parents or equivalently, 200 to 1000 progeny with 100 progeny per pair were sampled

from simulated crosses. The case for one pair breeding parents has been addressed in the chapter

for PCV. Two versions of the Select function were compared:

• The GEBV approach, which selects individuals with the largest overall GEBVs.

• The NPCV approach, which selects individuals with the largest NPCV.

3600 simulation runs in total were carried out for all possible number of pairs ranging from 2 to

10, and the comparison was based on the time and probability of success, i.e., number of generations
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Table 4.1: The recombination frequencies used in the simulation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Q1 0.2725 0.2075 0.0569 0.0860 0.1414 0.0791 0.0126 0.2179 0.0659 0.0610

Q2 0.2649 0.1957 0.0759 0.1362 0.1693 0.1529 0.2951 0.1647 0.0102 0.0800

Q3 0.2148 0.0692 0.1452 0.1983 0.0285 0.3210 0.3044 0.2597 0.2480 0.2955

Q4 0.1262 0.1004 0.1037 0.0874 0.0875 0.1823 0.2654 0.2383 0.1667 0.0096

Q5 0.2705 0.1570 0.3078 0.2009 0.2670 0.1737 0.0329 0.3012 0.1600 0.1633

Q6 0.1776 0.0768 0.1434 0.2371 0.0097 0.0772 0.0873 0.2970 0.3016 0.0560

Q7 0.1169 0.2814 0.0616 0.0739 0.3096 0.1630 0.1118 0.1114 0.2033 0.3262

Q8 0.3130 0.0649 0.3016 0.0391 0.2434 0.2080 0.2266 0.5000 0.2059 0.5000

Q9 0.2920 0.5000 0.3266 0.0989 0.1629 0.2264 0.0455 – 0.2865 –

Q10 0.5000 – 0.1463 0.5000 0.5000 0.1318 0.2404 – 0.2685 –

Q11 – – 0.5000 – – 0.1225 0.5000 – 0.5000 –

Q12 – – – – – 0.5000 – – – –

to terminate and also different choice of number of pairs of breeding parents. The simulation was

implemented and results were generated using GNU Octave (Eaton et al., 2015). One random run

of simulation for example 1 with selecting 2 pairs of breeding parents in each generation based on

the heuristic NPCV approach is presented in table 4.2.

4.4.2 Results for Example 1

Figure 4.4 plots the bar plots of number of generations to terminate across all the simulations

for Example 1. Observed from the figure, we can derive the following conclusions that the NPCV

metric based approach has a greater chance to terminate 2 to 3 generations earlier compared with

the GEBV metric based approach. This result demonstrates that the NPCV approach outperforms

the GEBV approach in terms of the efficiency of the breeding process. We also compare the

effectiveness between two approaches in the following Table 4.3.

Table 4.3 presents the average number of generations to succeed for each choice of number of

pairs of breeding parents. Also, the table presents the proportion of simulations to successfully

achieve all the desirable alleles in the last generation, respectively. Reading from the table, we can

draw the following two major conclusions. First, the more pairs of breeding parents are selected

in each generation, the earlier the introgression process succeeds. Second, both methods could
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Generation Population log10 PCV

2 –21.76

3 –16.98

4 –13.56

5 –10.22

6 –7.49

7 –5.26

8 –2.77

9 –0.55

10 0

Table 4.2: A Random Simulation Run for Example 1 with 2 Pairs of Breeding Parents per Gener-

ation with the NPCV Approach.

achieve a relative high probability of success. We shall notice that when we select only 2 or 3

pairs of breeding parents, the performance of the GEBV approach is better. The reason is that the

heuristic approach of NPCV is determined by the initial result from the set cover model of the GEBV

approach. In the iterative updates, we only search a small portion of all the possible combinations

and it is possible that the initial starting point can not guarantee a promising candidate. However,

generally speaking, the NPCV method is better compared with the GEBV approach and with

sufficient number of pairs of breeding parents selected in each generation, the NPCV approach

could lead the probability of success very close to 1.
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Figure 4.4: Example 1: Combined number of generations to terminate. Performance of the GEBV

and the heuristic NPCV approaches in all the simulation runs of trait introgression of seven QTLs.

The vertical axis represents the proportion of number of generations to terminate. The horizontal

axis represents the possible number of generations to terminate.

Figure 4.5 presents the box plots of the proportion of desirable alleles among the selected breed-

ing parents in each generation, which could be considered as the approximation of the distributions

of the proportion of desirable alleles. This figure takes selecting 6 pairs of breeding parents in each

generation as an example. We can observe that before generation 7, the performance of the GEBV

approach is better compared with the NPCV approach. After generation 7, the improvement in

each generation of the NPCV approach is greater than the GEBV approach and the performance

of the NPCV approach is better. In general, the improvements of the GEBV approach has a

exponential trend while the trend of the NPCV approach seems to be linear.

4.4.3 Results for Example 2

Figure 4.6 plots the bar plots of number of generations to terminate across all the simulations

for Example 2. Observed from the figure, we can derive the following conclusions that the NPCV
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Result Summary

Pairs GGEBV RGEBV GGEBV NPCV RGEBV NPCV

2 13.45 0.98 11.28 0.73

3 13.35 0.96 10.98 0.91

4 13.35 0.97 10.79 0.96

5 13.19 0.94 10.46 0.99

6 13.15 0.94 10.34 1.00

7 12.93 0.98 10.22 0.99

8 12.75 0.94 10.24 1.00

9 12.64 0.94 10.07 1.00

10 12.69 0.93 10.07 1.00

Table 4.3: Simulation Result Summary of Example 1

metric based approach has a greater chance to terminate 4 to 5 generations earlier compared with

the GEBV metric based approach. For 20 alleles to introgress, the advantage of the NPCV approach

is more significant compared with the GEBV approach. This result demonstrates that the NPCV

approach outperforms the GEBV approach in terms of the efficiency of the breeding process. We

also compare the effectiveness between two approaches in the following Table 4.4.

Table 4.4 presents the average number of generations to succeed for each choice of number of

pairs of breeding parents. Also, the table presents the proportion of simulations to successfully

achieve all the desirable alleles in the last generation, respectively. Reading from the table, we can

draw similar conclusions. First, the more pairs of breeding parents are selected in each generation,

the earlier the introgression process succeeds. Second, both methods could achieve a relative

high probability of success. We shall notice that only in the case of 2 pairs of breeding parents

per generation, the performance of the GEBV approach is better. Generally speaking, the NPCV

method is better compared with the GEBV approach and with sufficient number of pairs of breeding

parents selected in each generation, the NPCV approach could lead the probability of success very

close to 1. In general, we can observe that when we need to introgress more alleles, the advantage

of the NPCV approach is more significant in terms of the effectiveness and efficiency.

Figure 4.7 presents the box plots of the proportion of desirable alleles among the selected breed-

ing parents in each generation, which could be considered as the approximation of the distributions
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Figure 4.5: Example 1: Proportion of desirable alleles in each generation with 6 pairs of breeding

parents selected. The box plots for the average proportion of desriable alleles in the 6 pairs of

selected breeding parents with the GEBV and the heuristic NPCV approaches in each generation.

The vertical axis represents the proportion of desirable alleles in the 6 pairs of selected breeding

parents. The horizontal axis represents different generations.

of the proportion of desirable alleles. This figure takes selecting 6 pairs of breeding parents in each

generation as an example. We can observe that before generation 7, the performance of the GEBV

approach is better compared with the NPCV approach. After generation 7, the improvement in

each generation of the NPCV approach is greater than the GEBV approach and the performance

of the NPCV approach is better. In general, the improvements of the GEBV approach has a

exponential trend while the trend of the NPCV approach seems to be linear.

4.5 Discussion

In order to make the PCV metric designed in Chapter 2 more applicable to practical breeding

problems, we extend the definition of the PCV to NPCV in this chapter. The NPCV is designed

for multi-pair breeding parents selection. With such metric, we are able to deal with the problems
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Figure 4.6: Example 2: Combined number of generations to terminate. Performance of the GEBV

and the heuristic NPCV approaches in all the simulation runs of trait introgression of seven QTLs.

The vertical axis represents the proportion of number of generations to terminate. The horizontal

axis represents the possible number of generations to terminate.

such as the desirables are carried by multiple individuals or one pair of breeding parents cannot

produce enough offspring progeny. Sharing similar concepts with the PCV, the NPCV takes the

recombination frequencies into consideration and selects the pairs of individuals that have the

highest probability to yield an ideal gamete in several generations later. With the simulation

experiments, we compare the NPCV metric with the conventional GEBV approach. The results

from the simulations demonstrate that the NPCV has advantages over the conventional selection

approach.

We compare different metrics in terms of time (generations) and the proportion of desirable

alleles in the final result. Missing from these criteria is a consideration of cost or the resource

allocation through the breeding process with the NPCV. In general, the number of pairs of parents

selected in each generation can serve as a surrogate for cost and in future research we will look

at the relative impacts of number of pairs of parents for each generation of evaluation. Another
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Result Summary

Pairs GGEBV RGEBV GGEBV NPCV RGEBV NPCV

2 16.96 0.98 13.73 0.70

3 16.73 0.95 13.02 0.99

4 16.53 0.96 12.83 0.96

5 16.40 0.96 12.31 1.00

6 16.36 0.96 12.31 1.00

7 16.39 0.94 12.18 1.00

8 16.17 0.95 12.17 1.00

9 16.31 0.96 12.00 1.00

10 16.24 0.95 11.97 1.00

Table 4.4: Simulation Result Summary of Example 2

potentially fruitful topic for future research is compete the design of NPCV. In this chapter, we

used an approximate transition matrix for calculation and we did not optimize the order of selected

breeding parents. Also, since we are selecting multiple pairs of breeding parents, the research on the

weight of each pair and the pair up policy design could lead to more promising result. Meanwhile,

the special mating procedure like self pollination or back crossing can be possible research topics,

as well. The research on those topics will make the definition of NPCV more comprehensive and

rigorous.

Another direction that deserves investigation in future research is the exploration of more opti-

mal breeding strategies. As mentioned before, the trait introgression breeding problem formulated

in this chapter, even with the simplifying assumptions, is too complex to be readily global solvable

by existing optimization methodology. Although the PCV and the NPCV based introgression out-

performs those approaches based on conventional metrics, it is still unclear to us how much further

improvement could be approached. Thus, we shall see the great potential on applying operations

research techniques to trait introgression project to improve plant breeding.
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Figure 4.7: Example 1: Proportion of desirable alleles in each generation with 6 pairs of breeding

parents selected. The box plots for the average proportion of desriable alleles in the 6 pairs of

selected breeding parents with the GEBV and the heuristic NPCV approaches in each generation.

The vertical axis represents the proportion of desirable alleles in the 6 pairs of selected breeding

parents. The horizontal axis represents different generations.
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CHAPTER 5. SUMMARY

This dissertation focuses on applying operations research approaches to solve the problems in

multi-allelic trait introgression process in plant breeding and improve its efficiency and effectiveness.

It consists of three major parts, which are the “Predicted Cross Value” design for parental selec-

tion problem, Markov decision processes based breeding strategy design for dynamically allocating

resources and the extended NPCV and set cover models for multi-pair parental selection problem.

The first part proposed the formulation of the multi-allelic introgression problem capturing the

mathematical essence of the process. Using time (generations) and probability of success as criteria

provides objective measurable criteria for comparing breeding strategies. At the same time, this

chapter proposed the PCV, which is a new metric for selection of parents. Rather than sticking to

predetermined breeding strategies such as backcrossing, as widely used for trait introgression, PCV

based selection identifies the pair of individuals whose complementary genotypes have the highest

probability to yield an ideal gamete in two generations. The simulations demonstrated that the

PCV outperforms the existing approaches GBV and OHV.

In the second part, we continued the discussion on the Multi-allelic Trait Introgression process

and we completed the work flow of MATI process by adding the components of resource allocation.

Then, we formulated the mathematical algorithm to simulate the MATI process and addressed

the resource allocation problem in the MATI process. To solve this problem, we used the Markov

decision processes model and we demonstrated the improvement brought by dynamically allocating

the budgets.

In the third part, we continued the discussion on parental selection of multi-allelic introgression

process, in which the previous PCV metric may not work very well. We modified our existing PCV

metric in order to quantify the parental selection for multiple pairs of breeding parents. We defined

the NPCV metric and updated the plumbing system for calculation. We built set cover models for
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different metrics to select multiple the optimal pairs of breeding parents to cover all the desirable

alleles and proposed a heuristic approach for the NPCV metric. The simulation based case studies

demonstrated the advantage of the NPCV over the conventional metric.

In general, the trait introgression problem in plant breeding is more and more complex as well

as attractive when we deep dive into this topic. We believe that solving such problems will make

evolutionary contributions to plant breeding and this topic deserves more attention for designing

better solutions.
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Servin, B., Martin, O. C., Mézard, M., et al. (2004). Toward a theory of marker-assisted gene

pyramiding. Genetics, 168(1):513–523.

Swami, S., Puterman, M. L., and Weinberg, C. B. (2001). Play it again, sam? optimal replace-

ment policies for a motion picture exhibitor. Manufacturing & Service Operations Management,

3(4):369–386.

USDA (2017). Long-term agricultural projections. https://www.usda.gov/oce/commodity/projections/.

Visscher, P. M., Haley, C. S., and Thompson, R. (1996). Marker-assisted introgression in backcross

breeding programs. Genetics, 144(4):1923–1932.

Xu, P., Wang, L., and Beavis, W. D. (2011). An optimization approach to gene stacking. European

Journal of Operational Research, 214(1):168–178.



www.manaraa.com

82

APPENDIX A. PROOF FOR CHAPTER 2

Part 1: Lemmas, propositions, and proofs

The following lemma is a straightforward derivation from the definitions in Section 2.1.

Lemma 1. For all i ∈ {1, ..., N}, we have:

gi =



Li,1 if J1
i = 0 and J3

i = 0;

Li,2 if J1
i = 1 and J3

i = 0;

Li,3 if J2
i = 0 and J3

i = 1;

Li,4 if J2
i = 1 and J3

i = 1.

(A.1)

The following lemma reveals the rationale behind the definition for the transition matrix.

Lemma 2. For all i ∈ {1, ..., N − 1}, j ∈ {1, 2, 3, 4}, and k ∈ {1, 2, 3, 4}, we have

P (gi+1 = Li+1,j |gi = Li,k) = Tk,j,i.

Proof. For all i ∈ {1, ..., N − 1}, we prove the equation for j = 1 and k ∈ {1, 2, 3}. The proof for

the other cases is similar.

P (gi+1 = Li+1,1|gi = Li,1)

= P (J1
i+1 = 0, J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J1
i+1 = 0|J1

i = 0, J3
i = 0)P (J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J1
i+1 = 0|J1

i = 0)P (J3
i+1 = 0|J3

i = 0)

= (1− ri)2

= T1,1,i.
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P (gi+1 = Li+1,2|gi = Li,1)

= P (J1
i+1 = 1, J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J1
i+1 = 1|J1

i = 0, J3
i = 0)P (J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J1
i+1 = 1|J1

i = 0)P (J3
i+1 = 0|J3

i = 0)

= ri(1− ri)

= T1,2,i.

P (gi+1 = Li+1,3|gi = Li,1)

= P (J2
i+1 = 1, J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J2
i+1 = 1|J1

i = 0, J3
i = 0)P (J3

i+1 = 0|J1
i = 0, J3

i = 0)

= P (J2
i+1 = 1)P (J3

i+1 = 1|J3
i = 0)

= 0.5ri

= T1,3,i.

Proof for Proposition 1:

Proof. We establish the respective equivalence between Equation (4.5) and Equations (4.6)-(4.7)

as follows.
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Equation (4.5) for i = 1 and Equation (4.6) are equivalent because for all j ∈ {1, 2}, we have

W1,j = P (g1 = 1, g1 = L1
1,j)

= P (L1
1,j = 1, g1 = L1

1,j)

= L1
1,jP (g1 = L1

1,j)

= L1
1,jP (J1

1 = j − 1, J3
1 = 0)

= L1
1,jP (J1

1 = j − 1)P (J3
1 = 0)

=
1

4
L1
1,j .

The case for j ∈ {3, 4} is similar.

Equation (4.5) for i ∈ {2, ..., N} and Equation (4.7) are equivalent because for all i ∈ {2, ..., N}

and j ∈ {1, 2, 3, 4}, we have

Wi,j = P (g1 = ... = gi = 1, gi = Li,j)

= P (g1 = ... = gi−1 = 1, gi = Li,j , Li,j = 1)

= Li,jP (g1 = ... = gi−1 = 1, gi = Li,j)

= Li,j

4∑
k=1

P (g1 = ... = gi−1 = 1, gi−1 = Li−1,k, gi = Li,j)

= Li,j

4∑
k=1

P (gi = Li,j |g1 = ... = gi−1 = 1, gi−1 = Li−1,k)

×P (g1 = ... = gi−1 = 1, gi−1 = Li−1,k)

= Li,j

4∑
k=1

P (gi = Li,j |gi−1 = Li−1,k)Wi−1,k

= Li,j

4∑
k=1

Tk,j,i−1Wi−1,k.

Proof for Proposition 2:
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Proof.

PCV(L1, L2, r) = P (g1 = ... = gN = 1)

=
4∑
j=1

P (g1 = ... = gN = 1, gN = LN,j)

=

4∑
j=1

WN,j .

Part 2: Optimization of PCV

We present an optimization model that can be used to select the optimal pair of individuals

with the highest PCV from a given population.

The model takes two parameters as input: the set of progeny of lines P ∈ BN×2×K with K

being the number of lines and the recombination frequencies vector r ∈ [0, 0.5]N−1. There are three

sets of decision variables:

• t ∈ B2×K is a binary variable, indicating whether (tm,k = 1) or not (tm,k = 0) line k is selected

as the mth parent, for all m ∈ {1, 2} and k ∈ {1, ...,K}.

• x ∈ BN×4 represents the genotypes of the two selected parents. If t1,k1 = t2,k2 = 1, then

x:,1:2 = P:,:,k1 and x:,3:4 = P:,:,k2 .

• w ∈ BN×4 is the water matrix of x.

The optimization model is presented in (A.3)-(A.10), which is a mixed integer linear program

(MILP). The objective function (A.3) calculates the PCV of the two selected parent lines, which

is to be maximized. Constraint (A.4) requires that exactly two breeding parents are selected from

the population, which could possibly be the same line. Constraints (A.6) and (A.7) assign the

genotypes of the selected lines from the breeding population to the x matrix. Constraints (A.7),

(A.8), and (A.9) calculate the water matrix for x. Constraint (A.7) is equivalent to Equation (4.6),
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and the two linear inequalities (A.8) and (A.9) are equivalence to

wi,j ≤ xi,j
4∑

k=1

Tk,j,i−1wi−1,j . (A.2)

Due to the objective function, inequality (A.2) will hold at equality when the model (A.3)-(A.10)

is solved to optimality, which is equivalent to Equation (4.7). Constraint (A.10) defines the types

and ranges of the decision variables. This MILP model can be solved to optimality by existing

algorithms and software.

max
w,x,t

4∑
k=1

wN,k (A.3)

s. t.
K∑

k=1

tm,k = 1 ∀m = 1, 2 (A.4)

xi,j =
K∑

k=1

t1,kPi,j,k ∀i ∈ {1, ..., N};∀j ∈ {1, 2} (A.5)

xi,j =
K∑

k=1

t2,kPi,j−2,k ∀i ∈ {1, ..., N};∀j ∈ {3, 4} (A.6)

w1,j = 0.25x1,j ∀j ∈ {1, 2, 3, 4} (A.7)

wi,j ≤ xi,j ∀i ∈ {2, ..., N},∀j ∈ {1, 2, 3, 4} (A.8)

wi,j ≤
4∑

k=1

Tk,j,i−1wi−1,j , ∀i ∈ {2, ..., N},∀j ∈ {1, 2, 3, 4} (A.9)

0 ≤ w ≤ 1;x, t binary. (A.10)

Alternatively, the optimal selection of breeding parents can be achieved via a brute force enu-

meration of all possible 1
2n(n+ 1) combinations (excluding symmetric duplications).
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APPENDIX B. PROOF FOR CHAPTER 4

B.1 Transition Matrix

Here, we present the brief derivation of the transition matrix in Chapter 4. For a given vector of

recombination frequencies, r ∈ [0, 0.5]N−1, the transition matrix T ∈ [0, 0.5]4M×4M×(N−1) is defined

as

T4j−3:4j,4j−3:4j,i ≈



(1− ri)t ri(1− ri)t−1 0.5ri(1− ri)t−2 0.5ri(1− ri)t−2

ri(1− ri)t−1 (1− ri)t 0.5ri(1− ri)t−2 0.5ri(1− ri)t−2

0.5ri(1− ri)t−2 0.5ri(1− ri)t−2 (1− ri)t ri(1− ri)t−1

0.5ri(1− ri)t−2 0.5ri(1− ri)t−2 ri(1− ri)t−1 (1− ri)t


,

∀i ∈ {1, ..., N − 1}, j ∈ {1, ...,M}.(B.1)

where t = dlog2(2M)e+ 1 and for the rest elements of Tp,q,i /∈ T4j−3:4j,4j−3:4j,i in T ,

Tp,q,i ≈
1− (1− ri)t−2

4M − 4
, (B.2)

B.2 Case I: 2M = 2a, a ∈ I+

Lemma 3. Let t = dlog2 2Me+ 1, for 2M = 2a, a ∈ I+, we have

P (gti+1 = Li+1,q|gti = Li,p) = Tp,q,i

.

Proof. When 2M = 2a:

Without loss of generality, we first prove the equality when j = 1 and Tp,q,i ∈ T4j−3:4j,4j−3:4j,i =

T1:4,1:4,i.

For all i ∈ {1, ..., N − 1}, we first prove the equation for p = 1, i.e., T1,1,i,T1,2,i, T1,3,i and T1,4,i.

The proof for the rest elements in T1:4,1:4,i will be similar.
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P (gti+1 = Li+1,1|gti = Li,1)

= P (no recombination, generation 1)P (no recombination, generation 2)...

P (no recombination, generation t− 1)P (no recombination,generation t)

= (1− ri)t

= T1,1,i.

P (gti+1 = Li+1,2|gti = Li,1)

= P (recombination, generation 1)P (no recombination, generation 2)...

P (no recombination, generation t− 1)P (no recombination,generation t)

= ri(1− ri)t−1

= T1,2,i.

P (gti+1 = Li+1,3|gti = Li,1)

= P (generation 1)P (inheriting Li+1,3)P (recombination, generation 2)...

P (no recombination, generation t− 1)P (no recombination, generation t)

= 1 · 0.5ri(1− ri)t−2

= T1,3,i.

P (gti+1 = Li+1,3|gti = Li,1)

= P (generation 1)P (inheriting Li+1,4)P (recombination, generation 2)...

P (no recombination, generation t− 1)P (no recombination, generation t)

= 1 · 0.5ri(1− ri)t−2

= T1,4,i.
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For the rest elements of T1,q,i, q > 4, because of the random mating design after the first

generation, T1,q,i =
1−(

∑4
q′=1 T1,q

′,i)

4M−4 = 1−(1−ri)G−2

4M−4 , q > 4

B.3 Case II: 2M 6= 2a, a ∈ I+

For 2M 6= 2a, we claim that

P (gti+1 = Li+1,q|gti = Li,p) ≈ Tp,q,i

, for all i ∈ {1, ..., N − 1}, p ∈ {1, ..., 4M}, and q ∈ {1, ..., 4M}. Here we give the calculation of two

examples as 2M = 6 and 2M = 10.

B.3.1 Example 1: 2M = 6

In this example, the breeding scheme is present in Figure B.1. Based on the scheme, we can

derive the following relations.

Figure B.1: Conceptual Figure for the Breeding Scheme for 3 Pairs of Parents
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P (gti+1 = Li+1,1|gti = Li,1)

= P (NR, G1)[P (Mating)P (NR, G2)P (NR, G3)P (NR, G4) + P (Keeping)P (NR, G3)P (NR, G4)]

= (1− ri)[
2

3
(1− ri)3 +

1

3
(1− ri)2]

= (1− ri)3(1−
2

3
ri)

≈ T1,1,i.

In the equation, NR represents no recombination and G represents Generation. Similarly, we

can derive the relations for other elements in the transition matrix.

P (gti+1 = Li+1,2|gti = Li,1)

= P (R, G1)[P (Mating)P (NR, G2)P (NR, G3)P (NR, G4) + P (Keeping)P (NR, G3)P (NR, G4)]

= ri[
2

3
(1− ri)3 +

1

3
(1− ri)2]

= ri(1− ri)2(1−
2

3
ri)

≈ T1,2,i.

P (gti+1 = Li+1,3|gti = Li,1)

= P (G1)P (InheritingLi+1,3)

[P (Mating)P (R, G2)P (NR, G3)P (NR, G4) + P (Keeping)P (R, G3)P (NR, G4)]

= 1 · 0.5[
2

3
ri(1− ri)2 +

1

3
ri(1− ri)]

= 0.5ri(1− ri)(1−
2

3
ri)

≈ T1,3,i.

The derivation for P (gti+1 = Li+1,4|gti = Li,1) ≈ T1,4,i is similar as the equations above.

For the rest elements of T1,q,i, q > 4, because of the random mating design after the first

generation, T1,q,i ≈
1−(

∑4
q′=1 T1,q

′,i)

4M−4 = 1−(1−ri)G−2

4M−4 , q > 4
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B.3.2 Example 1: 2M = 10

In this example, the breeding scheme is present in Figure B.2. Based on the scheme, we can

derive the following relations.

Figure B.2: Conceptual Figure for the Breeding Scheme for 5 Pairs of Parents

P (gti+1 = Li+1,1|gti = Li,1)

= P (NR, G1)

{P (Mating)P (NR,G2)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)] +

P (Keeping)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)]}

= (1− ri){
4

5
(1− ri)[

2

3
(1− ri)3 +

1

3
(1− ri)2] +

1

5
[
2

3
(1− ri)3 +

1

3
(1− ri)2]}

= (1− ri)3(1− 2

3
ri)(1−

4

5
ri)

≈ T1,1,i.

In the equation, NR represents no recombination and G represents Generation. Similarly, we

can derive the relations for other elements in the transition matrix.
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P (gti+1 = Li+1,1|gti = Li,1)

= P (NR, G1)

{P (Mating)P (NR,G2)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)] +

P (Keeping)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)]}

= (1− ri){
4

5
(1− ri)[

2

3
(1− ri)3 +

1

3
(1− ri)2] +

1

5
[
2

3
(1− ri)3 +

1

3
(1− ri)2]}

= (1− ri)3(1− 2

3
ri)(1−

4

5
ri)

≈ T1,1,i.

P (gti+1 = Li+1,2|gti = Li,1)

= P (R, G1)

{P (Mating)P (NR,G2)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)] +

P (Keeping)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)]}

= ri{
4

5
(1− ri)[

2

3
(1− ri)3 +

1

3
(1− ri)2] +

1

5
[
2

3
(1− ri)3 +

1

3
(1− ri)2]}

= ri(1− ri)2(1− 2

3
ri)(1−

4

5
ri)

≈ T1,1,i.

P (gti+1 = Li+1,3|gti = Li,1)

= P (G1)P (InheritingLi+1,3)

{P (Mating)P (R,G2)[P (Mating)P (NR, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (NR, G4)P (NR, G5)] +

P (Keeping)[P (Mating)P (R, G3)P (NR, G4)P (NR, G5) + P (Keeping)P (R, G4)P (NR, G5)]}

= 1 · 0.5{4

5
ri[

2

3
(1− ri)3 +

1

3
(1− ri)2] +

1

5
[
2

3
ri(1− ri)2 +

1

3
ri(1− ri)]}

= 0.5ri(1− ri)(1−
2

3
ri)(1−

4

5
ri)

≈ T1,3,i.
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The derivation for P (gti+1 = Li+1,4|gti = Li,1) ≈ T1,4,i is similar as the equations above.

For the rest elements of T1,q,i, q > 4, because of the random mating design after the first

generation, T1,q,i ≈
1−(

∑4
q′=1 T1,q

′,i)

4M−4 = 1−(1−ri)G−2

4M−4 , q > 4

B.3.3 Discussion

From the two examples above, we can observe that when 2M 6= 2a, a ∈ I+, the equation for

2M = 2a could be a good estimation. Also, for the elements Tp,q,i ∈ T4j−3:4j,4j−3:4j,i in T , the

estimation will be a lower bound and for the elements Tp,q,i /∈ T4j−3:4j,4j−3:4j,i in T , the estimation

will be a upper bound. Meanwhile, even based on the estimation, the simulation exactly simulates

the process of trait introgression and the results from the simulation are valid.

The exact derivation for this general case could be a future research topic.
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